{"title":"素数线性模式的小范围分布","authors":"Mayank Pandey, Katharine Woo","doi":"10.1112/jlms.13001","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Ψ</mi>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ψ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>ψ</mi>\n <mi>t</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>`</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mi>t</mi>\n </msup>\n </mrow>\n <annotation>$\\Psi =(\\psi _1,\\hdots, \\psi _t):`\\mathbb {Z}^d\\rightarrow \\mathbb {R}^t$</annotation>\n </semantics></math> be a system of linear forms with finite complexity. In their seminal paper, Green and Tao showed the following prime number theorem for values of the system <span></span><math>\n <semantics>\n <mi>Ψ</mi>\n <annotation>$\\Psi$</annotation>\n </semantics></math>:\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13001","citationCount":"0","resultStr":"{\"title\":\"Small-scale distribution of linear patterns of primes\",\"authors\":\"Mayank Pandey, Katharine Woo\",\"doi\":\"10.1112/jlms.13001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ψ</mi>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>ψ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mi>⋯</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>ψ</mi>\\n <mi>t</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>:</mo>\\n <mo>`</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>t</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Psi =(\\\\psi _1,\\\\hdots, \\\\psi _t):`\\\\mathbb {Z}^d\\\\rightarrow \\\\mathbb {R}^t$</annotation>\\n </semantics></math> be a system of linear forms with finite complexity. In their seminal paper, Green and Tao showed the following prime number theorem for values of the system <span></span><math>\\n <semantics>\\n <mi>Ψ</mi>\\n <annotation>$\\\\Psi$</annotation>\\n </semantics></math>:\\n\\n </p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13001\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.13001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 Ψ = ( ψ 1 , ⋯ , ψ t ) : ` Z d → R t $\Psi =(\psi _1,\hdots, \psi _t):`\mathbb {Z}^d\rightarrow \mathbb {R}^t$ 是一个具有有限复杂性的线性形式系统。格林和陶在他们的开创性论文中证明了系统Ψ $\Psi$ 值的以下素数定理:
Small-scale distribution of linear patterns of primes
Let be a system of linear forms with finite complexity. In their seminal paper, Green and Tao showed the following prime number theorem for values of the system :
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.