{"title":"月球上的激光诱导击穿光谱地球化学:准确性、探测极限和对解释的现实限制","authors":"M. D. Dyar, C. R. Ytsma, K. Lepore","doi":"10.1029/2024EA003635","DOIUrl":null,"url":null,"abstract":"<p>After its successful implementation on the surface of Mars, laser-induced breakdown spectroscopy (LIBS) is likely to be employed on a diverse array of other solid bodies in our Solar System. Here we address the accuracy and quantification limits of LIBS under the vacuum conditions found on the Moon relative to what is known about its geochemistry. The interplay among accuracy as represented by root mean-squared errors (RMSE), the median concentration, and quantification limits (LOQ) of LIBS analyses for each of 69 elements is evaluated. This comparison shows that several key elements in lunar geochemistry cannot be well-studied with LIBS, including K<sub>2</sub>O, S, Rb, Br, and C. Conversely, highly accurate analyses of SiO<sub>2</sub>, CaO, and many minor and trace elements such as Mn, Yb, and Zn are possible under conditions found on the Moon. Use of LIBS must always be considered in the context of the geochemistry and geology of the target materials.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003635","citationCount":"0","resultStr":"{\"title\":\"Geochemistry by Laser-Induced Breakdown Spectroscopy on the Moon: Accuracy, Detection Limits, and Realistic Constraints on Interpretations\",\"authors\":\"M. D. Dyar, C. R. Ytsma, K. Lepore\",\"doi\":\"10.1029/2024EA003635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>After its successful implementation on the surface of Mars, laser-induced breakdown spectroscopy (LIBS) is likely to be employed on a diverse array of other solid bodies in our Solar System. Here we address the accuracy and quantification limits of LIBS under the vacuum conditions found on the Moon relative to what is known about its geochemistry. The interplay among accuracy as represented by root mean-squared errors (RMSE), the median concentration, and quantification limits (LOQ) of LIBS analyses for each of 69 elements is evaluated. This comparison shows that several key elements in lunar geochemistry cannot be well-studied with LIBS, including K<sub>2</sub>O, S, Rb, Br, and C. Conversely, highly accurate analyses of SiO<sub>2</sub>, CaO, and many minor and trace elements such as Mn, Yb, and Zn are possible under conditions found on the Moon. Use of LIBS must always be considered in the context of the geochemistry and geology of the target materials.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003635\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003635\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003635","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Geochemistry by Laser-Induced Breakdown Spectroscopy on the Moon: Accuracy, Detection Limits, and Realistic Constraints on Interpretations
After its successful implementation on the surface of Mars, laser-induced breakdown spectroscopy (LIBS) is likely to be employed on a diverse array of other solid bodies in our Solar System. Here we address the accuracy and quantification limits of LIBS under the vacuum conditions found on the Moon relative to what is known about its geochemistry. The interplay among accuracy as represented by root mean-squared errors (RMSE), the median concentration, and quantification limits (LOQ) of LIBS analyses for each of 69 elements is evaluated. This comparison shows that several key elements in lunar geochemistry cannot be well-studied with LIBS, including K2O, S, Rb, Br, and C. Conversely, highly accurate analyses of SiO2, CaO, and many minor and trace elements such as Mn, Yb, and Zn are possible under conditions found on the Moon. Use of LIBS must always be considered in the context of the geochemistry and geology of the target materials.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.