Ji Yang, Chenzi Huai, Yutao Pang, Qin Luo, Lei Yang, Hui Wang
{"title":"评估深水码头地震流体力学效应的高效、准确的附加质量法","authors":"Ji Yang, Chenzi Huai, Yutao Pang, Qin Luo, Lei Yang, Hui Wang","doi":"10.1002/eer2.94","DOIUrl":null,"url":null,"abstract":"<p>Due to the effects of complex fluid-structure interaction, deep-water bridges are more prone to damage under strong earthquakes. Quantification of seismic fluid-structure interaction can be crucial for evaluating the seismic performance of deep-water bridges. Currently, there is a lack of suitable methods for rapidly calculating hydrodynamic added mass for deep-water piers with complex cross-sectional shapes in the seismic performance assessment of deep-water bridges. In light of this, the present paper proposed an efficient and accurate method for calculating the hydrodynamic added mass of piers with different cross-sectional shapes. Taking circular, rectangular, and dumbbell-shaped piers as examples, the proposed method was employed to calculate the hydrodynamic added mass for deep-water bridge piers. Comparison of the seismic responses obtained from the analytical formula, fluid-structure coupling refined numerical model and the proposed method in this paper validated the accuracy of the proposed method. Finally, the hydrodynamic coupling effects of deep-water bridge piers were also investigated. It was concluded that the proposed method can be efficient and accurate for obtaining the added mass of deep-water piers.</p>","PeriodicalId":100383,"journal":{"name":"Earthquake Engineering and Resilience","volume":"3 3","pages":"490-502"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eer2.94","citationCount":"0","resultStr":"{\"title\":\"An efficient and accurate method of added mass for evaluating the seismic hydrodynamic effect of deep-water piers\",\"authors\":\"Ji Yang, Chenzi Huai, Yutao Pang, Qin Luo, Lei Yang, Hui Wang\",\"doi\":\"10.1002/eer2.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the effects of complex fluid-structure interaction, deep-water bridges are more prone to damage under strong earthquakes. Quantification of seismic fluid-structure interaction can be crucial for evaluating the seismic performance of deep-water bridges. Currently, there is a lack of suitable methods for rapidly calculating hydrodynamic added mass for deep-water piers with complex cross-sectional shapes in the seismic performance assessment of deep-water bridges. In light of this, the present paper proposed an efficient and accurate method for calculating the hydrodynamic added mass of piers with different cross-sectional shapes. Taking circular, rectangular, and dumbbell-shaped piers as examples, the proposed method was employed to calculate the hydrodynamic added mass for deep-water bridge piers. Comparison of the seismic responses obtained from the analytical formula, fluid-structure coupling refined numerical model and the proposed method in this paper validated the accuracy of the proposed method. Finally, the hydrodynamic coupling effects of deep-water bridge piers were also investigated. It was concluded that the proposed method can be efficient and accurate for obtaining the added mass of deep-water piers.</p>\",\"PeriodicalId\":100383,\"journal\":{\"name\":\"Earthquake Engineering and Resilience\",\"volume\":\"3 3\",\"pages\":\"490-502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eer2.94\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eer2.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eer2.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient and accurate method of added mass for evaluating the seismic hydrodynamic effect of deep-water piers
Due to the effects of complex fluid-structure interaction, deep-water bridges are more prone to damage under strong earthquakes. Quantification of seismic fluid-structure interaction can be crucial for evaluating the seismic performance of deep-water bridges. Currently, there is a lack of suitable methods for rapidly calculating hydrodynamic added mass for deep-water piers with complex cross-sectional shapes in the seismic performance assessment of deep-water bridges. In light of this, the present paper proposed an efficient and accurate method for calculating the hydrodynamic added mass of piers with different cross-sectional shapes. Taking circular, rectangular, and dumbbell-shaped piers as examples, the proposed method was employed to calculate the hydrodynamic added mass for deep-water bridge piers. Comparison of the seismic responses obtained from the analytical formula, fluid-structure coupling refined numerical model and the proposed method in this paper validated the accuracy of the proposed method. Finally, the hydrodynamic coupling effects of deep-water bridge piers were also investigated. It was concluded that the proposed method can be efficient and accurate for obtaining the added mass of deep-water piers.