Pengfei Wang, Zhiyu Yi, Joseph G. Meert, Yu-Shu Liu, Silin Yang, Fei Wang, Zaijun Li, Baochun Huang
{"title":"从∼155 Ma岩体和岩屑看侏罗纪时期华北地块快速板块移动的古地磁制约因素","authors":"Pengfei Wang, Zhiyu Yi, Joseph G. Meert, Yu-Shu Liu, Silin Yang, Fei Wang, Zaijun Li, Baochun Huang","doi":"10.1029/2024GC011671","DOIUrl":null,"url":null,"abstract":"<p>A large-scale apparent polar wander occurred during the Jurassic interval, which is interpreted as true polar wander (TPW). As the motion is nearly orthogonal to the TPW axis, the North China Block (NCB) experienced the largest latitudinal and environmental changes and provides unique constraints on Jurassic TPW. However, due to the lack and uneven quality of paleomagnetic data, TPW records in North China are controversial. Here, we report a new paleomagnetic pole (80.8°N, 13.0°E, A<sub>95</sub> = 7.4°) from the late Jurassic sills and dykes that intrude the Nandaling and Xiahuayuan formations in the NCB. The new pole places the NCB at 36.8° ± 7.4°N at 155 ± 3.4 Ma, using Beijing as the reference site. Combined with the reliable Jurassic poles, our study reveals a large, steady southward shift of 37.3° ± 7.2° for the NCB during the Middle and Late Jurassic, and reflects a component of TPW. The position of ∼155 Ma pole also supports significant TPW prior to ∼160 Ma and agrees with proposals attributing the diachronous 165–155 Ma aridification across the Eastern Asian blocks.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011671","citationCount":"0","resultStr":"{\"title\":\"Paleomagnetic Constraints on the Rapid Plate Shift of North China Block During the Jurassic From ∼155 Ma Dykes and Sills\",\"authors\":\"Pengfei Wang, Zhiyu Yi, Joseph G. Meert, Yu-Shu Liu, Silin Yang, Fei Wang, Zaijun Li, Baochun Huang\",\"doi\":\"10.1029/2024GC011671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A large-scale apparent polar wander occurred during the Jurassic interval, which is interpreted as true polar wander (TPW). As the motion is nearly orthogonal to the TPW axis, the North China Block (NCB) experienced the largest latitudinal and environmental changes and provides unique constraints on Jurassic TPW. However, due to the lack and uneven quality of paleomagnetic data, TPW records in North China are controversial. Here, we report a new paleomagnetic pole (80.8°N, 13.0°E, A<sub>95</sub> = 7.4°) from the late Jurassic sills and dykes that intrude the Nandaling and Xiahuayuan formations in the NCB. The new pole places the NCB at 36.8° ± 7.4°N at 155 ± 3.4 Ma, using Beijing as the reference site. Combined with the reliable Jurassic poles, our study reveals a large, steady southward shift of 37.3° ± 7.2° for the NCB during the Middle and Late Jurassic, and reflects a component of TPW. The position of ∼155 Ma pole also supports significant TPW prior to ∼160 Ma and agrees with proposals attributing the diachronous 165–155 Ma aridification across the Eastern Asian blocks.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011671\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011671\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011671","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Paleomagnetic Constraints on the Rapid Plate Shift of North China Block During the Jurassic From ∼155 Ma Dykes and Sills
A large-scale apparent polar wander occurred during the Jurassic interval, which is interpreted as true polar wander (TPW). As the motion is nearly orthogonal to the TPW axis, the North China Block (NCB) experienced the largest latitudinal and environmental changes and provides unique constraints on Jurassic TPW. However, due to the lack and uneven quality of paleomagnetic data, TPW records in North China are controversial. Here, we report a new paleomagnetic pole (80.8°N, 13.0°E, A95 = 7.4°) from the late Jurassic sills and dykes that intrude the Nandaling and Xiahuayuan formations in the NCB. The new pole places the NCB at 36.8° ± 7.4°N at 155 ± 3.4 Ma, using Beijing as the reference site. Combined with the reliable Jurassic poles, our study reveals a large, steady southward shift of 37.3° ± 7.2° for the NCB during the Middle and Late Jurassic, and reflects a component of TPW. The position of ∼155 Ma pole also supports significant TPW prior to ∼160 Ma and agrees with proposals attributing the diachronous 165–155 Ma aridification across the Eastern Asian blocks.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.