Ilaria Fiore, Francesco Cannizzaro, Salvatore Caddemi, Ivo Caliò
{"title":"多裂缝季莫申科梁振动的分布格林函数","authors":"Ilaria Fiore, Francesco Cannizzaro, Salvatore Caddemi, Ivo Caliò","doi":"10.1016/j.apacoust.2024.110302","DOIUrl":null,"url":null,"abstract":"<div><div>In this study the forced vibrations of cracked beams in presence of damping are analysed. The adopted beam model is in accordance with the Timoshenko beam model and the presence of multiple bending and shear concentrated flexibilities, commonly used to model cracks, is accounted for. The strong discontinuities derived by the localised flexibilities are dealt with by means of a distributional approach avoiding the need of enforcing continuity conditions at the discontinuous sections. First, the exact Green’s functions, that is the steady-state response in the case of concentrated harmonic loads, are obtained via the presented distributional approach. The presented exact solutions are a computationally advantageous evaluation of the steady state response alternative to the direct time integration, as well as to a beam span sub-division. In addition, the presented distributional Green’s functions are employed to evaluate the response of multi-cracked beams subjected to arbitrary loading conditions (i.e. generic spatial distribution and time dependency), via convolution integral equation combined with an appropriate frequency domain analysis.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributional Green’s functions for the vibrations of multi-cracked Timoshenko beams\",\"authors\":\"Ilaria Fiore, Francesco Cannizzaro, Salvatore Caddemi, Ivo Caliò\",\"doi\":\"10.1016/j.apacoust.2024.110302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study the forced vibrations of cracked beams in presence of damping are analysed. The adopted beam model is in accordance with the Timoshenko beam model and the presence of multiple bending and shear concentrated flexibilities, commonly used to model cracks, is accounted for. The strong discontinuities derived by the localised flexibilities are dealt with by means of a distributional approach avoiding the need of enforcing continuity conditions at the discontinuous sections. First, the exact Green’s functions, that is the steady-state response in the case of concentrated harmonic loads, are obtained via the presented distributional approach. The presented exact solutions are a computationally advantageous evaluation of the steady state response alternative to the direct time integration, as well as to a beam span sub-division. In addition, the presented distributional Green’s functions are employed to evaluate the response of multi-cracked beams subjected to arbitrary loading conditions (i.e. generic spatial distribution and time dependency), via convolution integral equation combined with an appropriate frequency domain analysis.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004535\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004535","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Distributional Green’s functions for the vibrations of multi-cracked Timoshenko beams
In this study the forced vibrations of cracked beams in presence of damping are analysed. The adopted beam model is in accordance with the Timoshenko beam model and the presence of multiple bending and shear concentrated flexibilities, commonly used to model cracks, is accounted for. The strong discontinuities derived by the localised flexibilities are dealt with by means of a distributional approach avoiding the need of enforcing continuity conditions at the discontinuous sections. First, the exact Green’s functions, that is the steady-state response in the case of concentrated harmonic loads, are obtained via the presented distributional approach. The presented exact solutions are a computationally advantageous evaluation of the steady state response alternative to the direct time integration, as well as to a beam span sub-division. In addition, the presented distributional Green’s functions are employed to evaluate the response of multi-cracked beams subjected to arbitrary loading conditions (i.e. generic spatial distribution and time dependency), via convolution integral equation combined with an appropriate frequency domain analysis.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.