Nimra Iqbal , Amna Shoaib , Qudsia Fatima , Mohammad Abul Farah , Vaseem Raja
{"title":"壳聚糖纳米颗粒的合成及其对臭名昭著的霉菌毒素植物病原体的抗真菌功效","authors":"Nimra Iqbal , Amna Shoaib , Qudsia Fatima , Mohammad Abul Farah , Vaseem Raja","doi":"10.1016/j.stress.2024.100614","DOIUrl":null,"url":null,"abstract":"<div><div>Pathogenic fungi such as <em>Fusarium verticillioides, Alternaria alternata</em>, and <em>Macrophomina phaseolina</em> pose significant threats to agriculture and human health due to their production of carcinogenic mycotoxins. This study explored the antifungal potential of chitosan nanoparticles (ChNPs) against these fungi. ChNPs, synthesized via an ionic gelation method, exhibited a prominent UV–visible absorption peak at 250 nm, confirming successful nanoparticle formation. X-ray diffraction patterns revealed their amorphous structure, while FTIR analysis identified key functional groups, including hydroxyl and amine groups, with an average particle size of 50 nm. Antifungal assays demonstrated that ChNPs inhibited fungal growth in a concentration-dependent manner. Specifically, for <em>F. verticillioides</em>, ChNPs reduced growth by 20–60 % at concentrations ranging from 0.03 to 0.15 %, achieving complete inhibition at 0.21 %. Similarly, <em>A. alternata</em> exhibited a MIC of 0.24 %, and <em>M. phaseolina</em> reached a MIC of 0.26 % for complete growth suppression. Higher concentrations of ChNPs caused pronounced structural alterations in the fungi, including discoloration, fragmentation, and distortion of hyphae and conidia/sclerotia, which were linked to significant metabolic changes within the fungal cells. This study highlights the effectiveness of ChNPs as robust antifungal agents, demonstrating their ability to disrupt fungal morphology and enzyme activities.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100614"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and antifungal efficacy of chitosan nanoparticles against notorious mycotoxigenic phytopathogens\",\"authors\":\"Nimra Iqbal , Amna Shoaib , Qudsia Fatima , Mohammad Abul Farah , Vaseem Raja\",\"doi\":\"10.1016/j.stress.2024.100614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pathogenic fungi such as <em>Fusarium verticillioides, Alternaria alternata</em>, and <em>Macrophomina phaseolina</em> pose significant threats to agriculture and human health due to their production of carcinogenic mycotoxins. This study explored the antifungal potential of chitosan nanoparticles (ChNPs) against these fungi. ChNPs, synthesized via an ionic gelation method, exhibited a prominent UV–visible absorption peak at 250 nm, confirming successful nanoparticle formation. X-ray diffraction patterns revealed their amorphous structure, while FTIR analysis identified key functional groups, including hydroxyl and amine groups, with an average particle size of 50 nm. Antifungal assays demonstrated that ChNPs inhibited fungal growth in a concentration-dependent manner. Specifically, for <em>F. verticillioides</em>, ChNPs reduced growth by 20–60 % at concentrations ranging from 0.03 to 0.15 %, achieving complete inhibition at 0.21 %. Similarly, <em>A. alternata</em> exhibited a MIC of 0.24 %, and <em>M. phaseolina</em> reached a MIC of 0.26 % for complete growth suppression. Higher concentrations of ChNPs caused pronounced structural alterations in the fungi, including discoloration, fragmentation, and distortion of hyphae and conidia/sclerotia, which were linked to significant metabolic changes within the fungal cells. This study highlights the effectiveness of ChNPs as robust antifungal agents, demonstrating their ability to disrupt fungal morphology and enzyme activities.</div></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100614\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X24002677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Synthesis and antifungal efficacy of chitosan nanoparticles against notorious mycotoxigenic phytopathogens
Pathogenic fungi such as Fusarium verticillioides, Alternaria alternata, and Macrophomina phaseolina pose significant threats to agriculture and human health due to their production of carcinogenic mycotoxins. This study explored the antifungal potential of chitosan nanoparticles (ChNPs) against these fungi. ChNPs, synthesized via an ionic gelation method, exhibited a prominent UV–visible absorption peak at 250 nm, confirming successful nanoparticle formation. X-ray diffraction patterns revealed their amorphous structure, while FTIR analysis identified key functional groups, including hydroxyl and amine groups, with an average particle size of 50 nm. Antifungal assays demonstrated that ChNPs inhibited fungal growth in a concentration-dependent manner. Specifically, for F. verticillioides, ChNPs reduced growth by 20–60 % at concentrations ranging from 0.03 to 0.15 %, achieving complete inhibition at 0.21 %. Similarly, A. alternata exhibited a MIC of 0.24 %, and M. phaseolina reached a MIC of 0.26 % for complete growth suppression. Higher concentrations of ChNPs caused pronounced structural alterations in the fungi, including discoloration, fragmentation, and distortion of hyphae and conidia/sclerotia, which were linked to significant metabolic changes within the fungal cells. This study highlights the effectiveness of ChNPs as robust antifungal agents, demonstrating their ability to disrupt fungal morphology and enzyme activities.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.