用于低频扩散吸声测试的混响室优化设计

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
Paul Didier , Cédric Van hoorickx , Edwin P.B. Reynders
{"title":"用于低频扩散吸声测试的混响室优化设计","authors":"Paul Didier ,&nbsp;Cédric Van hoorickx ,&nbsp;Edwin P.B. Reynders","doi":"10.1016/j.apacoust.2024.110311","DOIUrl":null,"url":null,"abstract":"<div><div>The reproducibility of sound absorption testing with the reverberation room method is a long-standing concern. Absorptive samples induce directionality in the nearfield, while the farfield depends on the room geometry below the Schroeder frequency. Nevertheless, when properly accounting for nearfield effects, the theoretical diffuse absorption coefficient of a sample still represents its average performance across an ensemble of different rooms, even at very low frequencies. Recent research found that particular reverberation room designs allow for an accurate measurement of the diffuse sound absorption coefficient of highly absorptive samples at low frequencies. Pinpointing such designs hence opens up a possibility to sustainably improve the low-frequency reproducibility of sound absorption testing in reverberation rooms. The present paper introduces a numerical optimisation framework that serves this purpose. Specific room shapes are parametrised and the geometrical room parameters are optimised so as to minimise the difference between the measured and the diffuse absorption coefficient under appropriate constraints. The sound absorption testing of a sample in a particular reverberation room is numerically simulated using a method that is both accurate and computationally efficient at low frequencies. The diffuse absorption is computed with a hybrid deterministic-statistical energy analysis approach that accounts for the detailed absorber properties, geometry, and boundary conditions, as well as the nearfield effects. The methodology is applied to both cuboidal and hexahedral room shapes. Certain optimised designs are found not only to provide an excellent match for the absorber that was used during the optimisation, but they also maintain their performance across a range of absorptive samples. Additionally, potential geometrical deviations are found to be well tolerated by these reverberation room designs.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverberation room design optimisation for low-frequency diffuse sound absorption testing\",\"authors\":\"Paul Didier ,&nbsp;Cédric Van hoorickx ,&nbsp;Edwin P.B. Reynders\",\"doi\":\"10.1016/j.apacoust.2024.110311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The reproducibility of sound absorption testing with the reverberation room method is a long-standing concern. Absorptive samples induce directionality in the nearfield, while the farfield depends on the room geometry below the Schroeder frequency. Nevertheless, when properly accounting for nearfield effects, the theoretical diffuse absorption coefficient of a sample still represents its average performance across an ensemble of different rooms, even at very low frequencies. Recent research found that particular reverberation room designs allow for an accurate measurement of the diffuse sound absorption coefficient of highly absorptive samples at low frequencies. Pinpointing such designs hence opens up a possibility to sustainably improve the low-frequency reproducibility of sound absorption testing in reverberation rooms. The present paper introduces a numerical optimisation framework that serves this purpose. Specific room shapes are parametrised and the geometrical room parameters are optimised so as to minimise the difference between the measured and the diffuse absorption coefficient under appropriate constraints. The sound absorption testing of a sample in a particular reverberation room is numerically simulated using a method that is both accurate and computationally efficient at low frequencies. The diffuse absorption is computed with a hybrid deterministic-statistical energy analysis approach that accounts for the detailed absorber properties, geometry, and boundary conditions, as well as the nearfield effects. The methodology is applied to both cuboidal and hexahedral room shapes. Certain optimised designs are found not only to provide an excellent match for the absorber that was used during the optimisation, but they also maintain their performance across a range of absorptive samples. Additionally, potential geometrical deviations are found to be well tolerated by these reverberation room designs.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004626\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004626","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

使用混响室方法进行吸声测试的可重复性是一个长期关注的问题。吸声样本在近场具有方向性,而远场则取决于施罗德频率以下的房间几何形状。尽管如此,在适当考虑近场效应的情况下,样品的理论扩散吸收系数仍然代表了不同房间的平均性能,即使在非常低的频率下也是如此。最近的研究发现,特定的混响室设计可以精确测量高吸声样本在低频时的扩散吸声系数。因此,准确定位这些设计为持续改善混响室吸声测试的低频重现性提供了可能。本文引入了一个数值优化框架来实现这一目的。对特定的房间形状进行参数化,并对房间几何参数进行优化,以便在适当的约束条件下最大限度地减小测量值与扩散吸声系数之间的差异。在特定混响室中对样本进行吸声测试时,会使用一种在低频下既精确又高效的计算方法进行数值模拟。采用确定性-统计性混合能量分析方法计算扩散吸声,该方法考虑了详细的吸声特性、几何形状、边界条件以及近场效应。该方法适用于立方体和六面体房间形状。结果发现,某些优化设计不仅能与优化过程中使用的吸收器完美匹配,还能在一系列吸收样本中保持其性能。此外,这些混响室设计还能很好地容忍潜在的几何偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reverberation room design optimisation for low-frequency diffuse sound absorption testing
The reproducibility of sound absorption testing with the reverberation room method is a long-standing concern. Absorptive samples induce directionality in the nearfield, while the farfield depends on the room geometry below the Schroeder frequency. Nevertheless, when properly accounting for nearfield effects, the theoretical diffuse absorption coefficient of a sample still represents its average performance across an ensemble of different rooms, even at very low frequencies. Recent research found that particular reverberation room designs allow for an accurate measurement of the diffuse sound absorption coefficient of highly absorptive samples at low frequencies. Pinpointing such designs hence opens up a possibility to sustainably improve the low-frequency reproducibility of sound absorption testing in reverberation rooms. The present paper introduces a numerical optimisation framework that serves this purpose. Specific room shapes are parametrised and the geometrical room parameters are optimised so as to minimise the difference between the measured and the diffuse absorption coefficient under appropriate constraints. The sound absorption testing of a sample in a particular reverberation room is numerically simulated using a method that is both accurate and computationally efficient at low frequencies. The diffuse absorption is computed with a hybrid deterministic-statistical energy analysis approach that accounts for the detailed absorber properties, geometry, and boundary conditions, as well as the nearfield effects. The methodology is applied to both cuboidal and hexahedral room shapes. Certain optimised designs are found not only to provide an excellent match for the absorber that was used during the optimisation, but they also maintain their performance across a range of absorptive samples. Additionally, potential geometrical deviations are found to be well tolerated by these reverberation room designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信