{"title":"偶氮染料生物脱色过程中粉末活性炭的电化学特性与细菌内部生化过程之间的相互作用:一种解释机制","authors":"Pedram Hassanvand , Masoud Rajabi , Tayebe Bagheri Lotfabad , Soheila Yaghmaei","doi":"10.1016/j.procbio.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>Drawing on prior reports highlighting the redox mediator properties of powdered activated carbon (PAC), this study was designed to evaluate these properties to enhance the decolorization of azo dye by <em>Klebsiella quasipneumoniae</em> GT7. It was found that the presence of 0.5 % PAC in the medium increased the biodecolorization rate early in incubation. Chemical analysis revealed that dye conversion into aromatic amines occurred in microbial systems both with and without PAC. However, at initial dye concentrations (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>id</mi></mrow></msub></math></span>) of 2 mM or higher, some dye remained on the PAC surface and in the medium. In contrast, the PAC-free system achieved nearly 100 % biodecolorization at all initial dye concentrations. The negative impact of PAC on decolorization efficiency in microbial systems with high initial dye concentrations cannot be solely explained by its redox mediator function. This study used the amphoteric-Donnan model for PAC's electrical double layer (EDL) and Mitchell's chemiosmotic model for bacterial proton motive force (PMF) to explore this. It found that charge storage in PAC's EDL regulates electron transfer fluxes, and proton species enhance the proton motive force across the bacterial membrane. These observations improve the understanding of PAC's role in microbial decolorization and its potential future applications.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"146 ","pages":"Pages 498-508"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction between the electrochemical properties of powdered activated carbon and the biochemical processes within bacteria in Azo dye biodecolorization: An explanatory mechanism\",\"authors\":\"Pedram Hassanvand , Masoud Rajabi , Tayebe Bagheri Lotfabad , Soheila Yaghmaei\",\"doi\":\"10.1016/j.procbio.2024.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drawing on prior reports highlighting the redox mediator properties of powdered activated carbon (PAC), this study was designed to evaluate these properties to enhance the decolorization of azo dye by <em>Klebsiella quasipneumoniae</em> GT7. It was found that the presence of 0.5 % PAC in the medium increased the biodecolorization rate early in incubation. Chemical analysis revealed that dye conversion into aromatic amines occurred in microbial systems both with and without PAC. However, at initial dye concentrations (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>id</mi></mrow></msub></math></span>) of 2 mM or higher, some dye remained on the PAC surface and in the medium. In contrast, the PAC-free system achieved nearly 100 % biodecolorization at all initial dye concentrations. The negative impact of PAC on decolorization efficiency in microbial systems with high initial dye concentrations cannot be solely explained by its redox mediator function. This study used the amphoteric-Donnan model for PAC's electrical double layer (EDL) and Mitchell's chemiosmotic model for bacterial proton motive force (PMF) to explore this. It found that charge storage in PAC's EDL regulates electron transfer fluxes, and proton species enhance the proton motive force across the bacterial membrane. These observations improve the understanding of PAC's role in microbial decolorization and its potential future applications.</div></div>\",\"PeriodicalId\":20811,\"journal\":{\"name\":\"Process Biochemistry\",\"volume\":\"146 \",\"pages\":\"Pages 498-508\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359511324003222\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511324003222","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interaction between the electrochemical properties of powdered activated carbon and the biochemical processes within bacteria in Azo dye biodecolorization: An explanatory mechanism
Drawing on prior reports highlighting the redox mediator properties of powdered activated carbon (PAC), this study was designed to evaluate these properties to enhance the decolorization of azo dye by Klebsiella quasipneumoniae GT7. It was found that the presence of 0.5 % PAC in the medium increased the biodecolorization rate early in incubation. Chemical analysis revealed that dye conversion into aromatic amines occurred in microbial systems both with and without PAC. However, at initial dye concentrations () of 2 mM or higher, some dye remained on the PAC surface and in the medium. In contrast, the PAC-free system achieved nearly 100 % biodecolorization at all initial dye concentrations. The negative impact of PAC on decolorization efficiency in microbial systems with high initial dye concentrations cannot be solely explained by its redox mediator function. This study used the amphoteric-Donnan model for PAC's electrical double layer (EDL) and Mitchell's chemiosmotic model for bacterial proton motive force (PMF) to explore this. It found that charge storage in PAC's EDL regulates electron transfer fluxes, and proton species enhance the proton motive force across the bacterial membrane. These observations improve the understanding of PAC's role in microbial decolorization and its potential future applications.
期刊介绍:
Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.