连续 k-out-of-n:G 系统的香农差分熵特性

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Mohamed Kayid , Mashael A. Alshehri
{"title":"连续 k-out-of-n:G 系统的香农差分熵特性","authors":"Mohamed Kayid ,&nbsp;Mashael A. Alshehri","doi":"10.1016/j.orl.2024.107190","DOIUrl":null,"url":null,"abstract":"<div><div>This research delves into the Shannon differential entropy properties of consecutive <span><math><mi>k</mi></math></span>-out-of-<span><math><mi>n</mi></math></span>:G. Initially, an expression for the entropy of the lifetime of a consecutive <span><math><mi>k</mi></math></span>-out-of-<span><math><mi>n</mi></math></span>:G system is formulated, providing a comprehensive understanding of its entropy characteristics. A characterization outcome is also derived. Furthermore, useful bounds are provided for the entropy of the lifetime of these systems. A nonparametric estimator for the new entropy metric is developed to assist in practical application. The effectiveness of this estimator is demonstrated through the use of simulated datasets, followed by a numerical illustration using a real-world dataset.</div></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"57 ","pages":"Article 107190"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shannon differential entropy properties of consecutive k-out-of-n:G systems\",\"authors\":\"Mohamed Kayid ,&nbsp;Mashael A. Alshehri\",\"doi\":\"10.1016/j.orl.2024.107190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research delves into the Shannon differential entropy properties of consecutive <span><math><mi>k</mi></math></span>-out-of-<span><math><mi>n</mi></math></span>:G. Initially, an expression for the entropy of the lifetime of a consecutive <span><math><mi>k</mi></math></span>-out-of-<span><math><mi>n</mi></math></span>:G system is formulated, providing a comprehensive understanding of its entropy characteristics. A characterization outcome is also derived. Furthermore, useful bounds are provided for the entropy of the lifetime of these systems. A nonparametric estimator for the new entropy metric is developed to assist in practical application. The effectiveness of this estimator is demonstrated through the use of simulated datasets, followed by a numerical illustration using a real-world dataset.</div></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"57 \",\"pages\":\"Article 107190\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724001263\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724001263","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入探讨了连续 k-out-of-n:G 的香农差分熵特性。首先,研究人员提出了连续 k-out-of-n:G 系统寿命熵的表达式,使人们对其熵特性有了全面的了解。同时还得出了一个表征结果。此外,还为这些系统的寿命熵提供了有用的边界。为新的熵度量开发了一个非参数估计器,以帮助实际应用。通过使用模拟数据集演示了该估算器的有效性,随后使用真实世界数据集进行了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shannon differential entropy properties of consecutive k-out-of-n:G systems
This research delves into the Shannon differential entropy properties of consecutive k-out-of-n:G. Initially, an expression for the entropy of the lifetime of a consecutive k-out-of-n:G system is formulated, providing a comprehensive understanding of its entropy characteristics. A characterization outcome is also derived. Furthermore, useful bounds are provided for the entropy of the lifetime of these systems. A nonparametric estimator for the new entropy metric is developed to assist in practical application. The effectiveness of this estimator is demonstrated through the use of simulated datasets, followed by a numerical illustration using a real-world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信