Lu Wang , Zihan Dai , Jianqiang Bi , Yunzhen Chen , Ziyu Wang , Zhenqian Sun , Zhongjie Ji , Hongliang Wang , Yan Zhang , Limei Wang , Junjie Mao , Junxing Yang
{"title":"具有持续释放多柔比星功能的多巴胺功能化缺钙羟基磷灰石三维打印支架,用于骨肉瘤的协同化疗-光热疗法和加速骨再生","authors":"Lu Wang , Zihan Dai , Jianqiang Bi , Yunzhen Chen , Ziyu Wang , Zhenqian Sun , Zhongjie Ji , Hongliang Wang , Yan Zhang , Limei Wang , Junjie Mao , Junxing Yang","doi":"10.1016/j.mtbio.2024.101253","DOIUrl":null,"url":null,"abstract":"<div><div>Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101253"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration\",\"authors\":\"Lu Wang , Zihan Dai , Jianqiang Bi , Yunzhen Chen , Ziyu Wang , Zhenqian Sun , Zhongjie Ji , Hongliang Wang , Yan Zhang , Limei Wang , Junjie Mao , Junxing Yang\",\"doi\":\"10.1016/j.mtbio.2024.101253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101253\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003144\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003144","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration
Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).