{"title":"探索原中子星的宏观特性:熵和轻子分数的影响","authors":"Sayantan Ghosh , Shahebaj Shaikh , Probit J. Kalita , Pinku Routaray , Bharat Kumar , B.K. Agrawal","doi":"10.1016/j.nuclphysb.2024.116697","DOIUrl":null,"url":null,"abstract":"<div><div>Neutron stars (NSs) have generally been considered as cold, zero-temperature entities. Recent progress in computational methods and theoretical modelling has opened up the exploration of finite temperature effects, marking an important research frontier. We examine the macroscopic properties of Proto-Neutron Stars (PNS) using different parametrizations of relativistic mean field (RMF) models. We adopt a constant entropy approach by fixing entropy per baryon, <span><math><mi>S</mi><mo>=</mo><mn>1</mn></math></span> and 2. Higher S elevates the maximum mass for PNS and flattens the mass-radius curves. The higher lepton fraction (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>) leads to a decrease in maximum mass and an increase in the canonical radius. Furthermore, both the S and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> influence the dimensionless tidal deformability (Λ). We note that the <em>f</em>-mode frequencies in PNSs increase as S decreases and the <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> increases at maximum mass. We find that the macroscopic properties of the PNS exhibit the same trend, irrespective of the parameter sets employed for the variation of S and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1008 ","pages":"Article 116697"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the macroscopic properties of proto-neutron stars: Effects of entropy and lepton fraction\",\"authors\":\"Sayantan Ghosh , Shahebaj Shaikh , Probit J. Kalita , Pinku Routaray , Bharat Kumar , B.K. Agrawal\",\"doi\":\"10.1016/j.nuclphysb.2024.116697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neutron stars (NSs) have generally been considered as cold, zero-temperature entities. Recent progress in computational methods and theoretical modelling has opened up the exploration of finite temperature effects, marking an important research frontier. We examine the macroscopic properties of Proto-Neutron Stars (PNS) using different parametrizations of relativistic mean field (RMF) models. We adopt a constant entropy approach by fixing entropy per baryon, <span><math><mi>S</mi><mo>=</mo><mn>1</mn></math></span> and 2. Higher S elevates the maximum mass for PNS and flattens the mass-radius curves. The higher lepton fraction (<span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>) leads to a decrease in maximum mass and an increase in the canonical radius. Furthermore, both the S and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> influence the dimensionless tidal deformability (Λ). We note that the <em>f</em>-mode frequencies in PNSs increase as S decreases and the <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> increases at maximum mass. We find that the macroscopic properties of the PNS exhibit the same trend, irrespective of the parameter sets employed for the variation of S and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1008 \",\"pages\":\"Article 116697\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002633\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002633","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
摘要
中子星(NSs)通常被认为是冷的、零温度的实体。计算方法和理论建模的最新进展开启了对有限温度效应的探索,标志着一个重要的研究前沿。我们利用相对论均场模型的不同参数化研究了原中子星(PNS)的宏观性质。我们采用恒熵方法,固定每个重子的熵,S=1 和 2。S越大,PNS的最大质量越高,质量-半径曲线越平缓。更高的轻子分数(Yl)会导致最大质量下降和典型半径增加。此外,S 和 Yl 都会影响无量纲潮汐变形率(Λ)。我们注意到,PNS 的 f 模频率随着 S 的减小而增大,而 Yl 则在最大质量时增大。我们发现,无论采用哪种参数集来改变 S 和 Yl,PNS 的宏观特性都表现出相同的趋势。
Exploring the macroscopic properties of proto-neutron stars: Effects of entropy and lepton fraction
Neutron stars (NSs) have generally been considered as cold, zero-temperature entities. Recent progress in computational methods and theoretical modelling has opened up the exploration of finite temperature effects, marking an important research frontier. We examine the macroscopic properties of Proto-Neutron Stars (PNS) using different parametrizations of relativistic mean field (RMF) models. We adopt a constant entropy approach by fixing entropy per baryon, and 2. Higher S elevates the maximum mass for PNS and flattens the mass-radius curves. The higher lepton fraction () leads to a decrease in maximum mass and an increase in the canonical radius. Furthermore, both the S and influence the dimensionless tidal deformability (Λ). We note that the f-mode frequencies in PNSs increase as S decreases and the increases at maximum mass. We find that the macroscopic properties of the PNS exhibit the same trend, irrespective of the parameter sets employed for the variation of S and .
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.