波方程的新适当正交分解法与二次差商

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Andrew Janes, John R. Singler
{"title":"波方程的新适当正交分解法与二次差商","authors":"Andrew Janes,&nbsp;John R. Singler","doi":"10.1016/j.cam.2024.116279","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, researchers have investigated the relationship between proper orthogonal decomposition (POD), difference quotients (DQs), and pointwise in time error bounds for POD reduced order models of partial differential equations. In a recent work (Eskew and Singler, Adv. Comput. Math., 49, 2023, no. 2, Paper No. 13), a new approach to POD with DQs was developed that is more computationally efficient than the standard DQ POD approach and it also retains the guaranteed pointwise in time error bounds of the standard method. In this work, we extend this new DQ POD approach to the case of second difference quotients (DDQs). Specifically, a new POD method utilizing DDQs and only one snapshot and one DQ is developed and used to prove ROM error bounds for the damped wave equation. This new approach eliminates data redundancy in the standard DDQ POD approach that uses all of the snapshots, DQs, and DDQs. We show that this new DDQ approach also has pointwise in time data error bounds similar to DQ POD and use it to prove pointwise and energy ROM error bounds. We provide numerical results for the POD ROM errors to demonstrate the theoretical results. We also explore an application of POD to simulate ROMs past the training interval for collecting the snapshot data for the standard POD approach and the DDQ POD method.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new proper orthogonal decomposition method with second difference quotients for the wave equation\",\"authors\":\"Andrew Janes,&nbsp;John R. Singler\",\"doi\":\"10.1016/j.cam.2024.116279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, researchers have investigated the relationship between proper orthogonal decomposition (POD), difference quotients (DQs), and pointwise in time error bounds for POD reduced order models of partial differential equations. In a recent work (Eskew and Singler, Adv. Comput. Math., 49, 2023, no. 2, Paper No. 13), a new approach to POD with DQs was developed that is more computationally efficient than the standard DQ POD approach and it also retains the guaranteed pointwise in time error bounds of the standard method. In this work, we extend this new DQ POD approach to the case of second difference quotients (DDQs). Specifically, a new POD method utilizing DDQs and only one snapshot and one DQ is developed and used to prove ROM error bounds for the damped wave equation. This new approach eliminates data redundancy in the standard DDQ POD approach that uses all of the snapshots, DQs, and DDQs. We show that this new DDQ approach also has pointwise in time data error bounds similar to DQ POD and use it to prove pointwise and energy ROM error bounds. We provide numerical results for the POD ROM errors to demonstrate the theoretical results. We also explore an application of POD to simulate ROMs past the training interval for collecting the snapshot data for the standard POD approach and the DDQ POD method.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最近,研究人员对偏微分方程 POD 降阶模型的适当正交分解(POD)、差商(DQs)和时点误差边界之间的关系进行了研究。最近的一项研究(Eskew 和 Singler,Adv. Comput. Math.,49,2023,no.2,Paper No.13)开发了一种使用 DQ 的 POD 新方法,它比标准 DQ POD 方法更具计算效率,而且还保留了标准方法的时间点误差边界保证。在这项工作中,我们将这种新的 DQ POD 方法扩展到了二次差商 (DDQ) 的情况。具体来说,我们开发了一种新的 POD 方法,利用 DDQ 以及一个快照和一个 DQ 来证明阻尼波方程的 ROM 误差边界。这种新方法消除了使用所有快照、DQ 和 DDQ 的标准 DDQ POD 方法中的数据冗余。我们证明了这种新的 DDQ 方法也具有与 DQ POD 相似的时间点数据误差边界,并用它证明了时间点和能量 ROM 误差边界。我们提供了 POD ROM 误差的数值结果,以证明理论结果。我们还探索了 POD 的应用,以模拟标准 POD 方法和 DDQ POD 方法在收集快照数据的训练时间间隔之后的 ROM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new proper orthogonal decomposition method with second difference quotients for the wave equation
Recently, researchers have investigated the relationship between proper orthogonal decomposition (POD), difference quotients (DQs), and pointwise in time error bounds for POD reduced order models of partial differential equations. In a recent work (Eskew and Singler, Adv. Comput. Math., 49, 2023, no. 2, Paper No. 13), a new approach to POD with DQs was developed that is more computationally efficient than the standard DQ POD approach and it also retains the guaranteed pointwise in time error bounds of the standard method. In this work, we extend this new DQ POD approach to the case of second difference quotients (DDQs). Specifically, a new POD method utilizing DDQs and only one snapshot and one DQ is developed and used to prove ROM error bounds for the damped wave equation. This new approach eliminates data redundancy in the standard DDQ POD approach that uses all of the snapshots, DQs, and DDQs. We show that this new DDQ approach also has pointwise in time data error bounds similar to DQ POD and use it to prove pointwise and energy ROM error bounds. We provide numerical results for the POD ROM errors to demonstrate the theoretical results. We also explore an application of POD to simulate ROMs past the training interval for collecting the snapshot data for the standard POD approach and the DDQ POD method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信