利用枯草芽孢杆菌(Bacillus safensis)作为生物肥料,可持续缓解大白菜(Brassica juncea L)的旱情

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Nizakat Bibi , Mohsin Khan , Fazal ur Rehman , Mahrukh , Shah Room , Muhammad Ansar Ahmad , Muhammad Iftikhar , Muhammad Farooq Hussain Munis , Hassan Javed Chaudhary
{"title":"利用枯草芽孢杆菌(Bacillus safensis)作为生物肥料,可持续缓解大白菜(Brassica juncea L)的旱情","authors":"Nizakat Bibi ,&nbsp;Mohsin Khan ,&nbsp;Fazal ur Rehman ,&nbsp;Mahrukh ,&nbsp;Shah Room ,&nbsp;Muhammad Ansar Ahmad ,&nbsp;Muhammad Iftikhar ,&nbsp;Muhammad Farooq Hussain Munis ,&nbsp;Hassan Javed Chaudhary","doi":"10.1016/j.bcab.2024.103388","DOIUrl":null,"url":null,"abstract":"<div><div>Carrier-based biofertilizers, which involve the introduction of plant growth-promoting bacteria into agricultural industry waste materials, are gaining increasing attention due to their profoundly positive impacts on soil health. In current study, various carriers, including dry leaves, sugarcane husk (SCH), rice husk (RH), and a combination/Mixture (MIX) of all three, were employed to support the bacterial strain, <em>Bacillus safensis</em> (SCAL1). This strain was utilized as a bioinoculant in the production of carrier-based biofertilizers. This particular strain was sourced from the Environmental and Microbial Botany Lab at Quaid-i-Azam University in Islamabad. <em>Bacillus safensis</em> strain exhibited notable improvements, evident in a high rate of longevity and larger colony-forming units within the carriers, as confirmed by measurements taken after 21 days of incubation. The drought stress was induced using polyethylene glycol solutions with concentrations of 15% and 25% administrated 6 and 15 days after germination, respectively. Four distinct biofertilizer types were formulated in the study: DL + SCAL1, RH + SCAL1, SCH + SCAL1, and MIX + SCAL1. When applied to <em>Brassica juncea</em> L. plants, all of these biofertilizers demonstrated the ability to mitigate drought stress and enhance the quality of <em>Brassica juncea</em> L. The immobilization onto SCAL1 by using SCH showed the best result compared to the liquid inoculum as carrier materials improve stability and shelf life. Furthermore, our results affirmed that carrier-based biofertilizers improved biochemical and physiological attributes of plants during drought conditions, highlighting their importance as a valuable resource for mitigating drought stress in <em>Brassica juncea</em> L. The findings revealed that carrier-based biofertilizers are an excellent source of diverse phytohormones, which are pivotal in alleviating drought stress.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Bacillus safensis as biofertilizer for sustainable drought alleviation in Brassica juncea L\",\"authors\":\"Nizakat Bibi ,&nbsp;Mohsin Khan ,&nbsp;Fazal ur Rehman ,&nbsp;Mahrukh ,&nbsp;Shah Room ,&nbsp;Muhammad Ansar Ahmad ,&nbsp;Muhammad Iftikhar ,&nbsp;Muhammad Farooq Hussain Munis ,&nbsp;Hassan Javed Chaudhary\",\"doi\":\"10.1016/j.bcab.2024.103388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carrier-based biofertilizers, which involve the introduction of plant growth-promoting bacteria into agricultural industry waste materials, are gaining increasing attention due to their profoundly positive impacts on soil health. In current study, various carriers, including dry leaves, sugarcane husk (SCH), rice husk (RH), and a combination/Mixture (MIX) of all three, were employed to support the bacterial strain, <em>Bacillus safensis</em> (SCAL1). This strain was utilized as a bioinoculant in the production of carrier-based biofertilizers. This particular strain was sourced from the Environmental and Microbial Botany Lab at Quaid-i-Azam University in Islamabad. <em>Bacillus safensis</em> strain exhibited notable improvements, evident in a high rate of longevity and larger colony-forming units within the carriers, as confirmed by measurements taken after 21 days of incubation. The drought stress was induced using polyethylene glycol solutions with concentrations of 15% and 25% administrated 6 and 15 days after germination, respectively. Four distinct biofertilizer types were formulated in the study: DL + SCAL1, RH + SCAL1, SCH + SCAL1, and MIX + SCAL1. When applied to <em>Brassica juncea</em> L. plants, all of these biofertilizers demonstrated the ability to mitigate drought stress and enhance the quality of <em>Brassica juncea</em> L. The immobilization onto SCAL1 by using SCH showed the best result compared to the liquid inoculum as carrier materials improve stability and shelf life. Furthermore, our results affirmed that carrier-based biofertilizers improved biochemical and physiological attributes of plants during drought conditions, highlighting their importance as a valuable resource for mitigating drought stress in <em>Brassica juncea</em> L. The findings revealed that carrier-based biofertilizers are an excellent source of diverse phytohormones, which are pivotal in alleviating drought stress.</div></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818124003724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

载体生物肥料是指将促进植物生长的细菌引入农业工业废料中,由于其对土壤健康具有深远的积极影响,因此越来越受到人们的关注。在当前的研究中,采用了各种载体,包括干树叶、甘蔗壳(SCH)、稻壳(RH)以及这三种载体的组合/混合物(MIX),以支持细菌菌株枯草芽孢杆菌(SCAL1)。该菌株被用作生产载体型生物肥料的生物接种剂。该菌株来自伊斯兰堡奎德-阿扎姆大学的环境和微生物植物学实验室。枯草芽孢杆菌(Bacillus safensis)菌株表现出了显著的改进,在培养 21 天后的测量结果表明,该菌株在载体中的寿命长、菌落形成单位大。发芽后 6 天和 15 天,分别使用浓度为 15%和 25%的聚乙二醇溶液诱导干旱胁迫。研究中配制了四种不同的生物肥料:DL + SCAL1、RH + SCAL1、SCH + SCAL1 和 MIX + SCAL1。与液态接种物相比,使用 SCH 将 SCAL1 固定化的效果最好,因为载体材料能提高稳定性和保质期。此外,我们的研究结果证实,载体生物肥料能改善干旱条件下植物的生化和生理特性,突出了其作为缓解甘蓝型大白菜干旱胁迫的宝贵资源的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Bacillus safensis as biofertilizer for sustainable drought alleviation in Brassica juncea L

Harnessing Bacillus safensis as biofertilizer for sustainable drought alleviation in Brassica juncea L
Carrier-based biofertilizers, which involve the introduction of plant growth-promoting bacteria into agricultural industry waste materials, are gaining increasing attention due to their profoundly positive impacts on soil health. In current study, various carriers, including dry leaves, sugarcane husk (SCH), rice husk (RH), and a combination/Mixture (MIX) of all three, were employed to support the bacterial strain, Bacillus safensis (SCAL1). This strain was utilized as a bioinoculant in the production of carrier-based biofertilizers. This particular strain was sourced from the Environmental and Microbial Botany Lab at Quaid-i-Azam University in Islamabad. Bacillus safensis strain exhibited notable improvements, evident in a high rate of longevity and larger colony-forming units within the carriers, as confirmed by measurements taken after 21 days of incubation. The drought stress was induced using polyethylene glycol solutions with concentrations of 15% and 25% administrated 6 and 15 days after germination, respectively. Four distinct biofertilizer types were formulated in the study: DL + SCAL1, RH + SCAL1, SCH + SCAL1, and MIX + SCAL1. When applied to Brassica juncea L. plants, all of these biofertilizers demonstrated the ability to mitigate drought stress and enhance the quality of Brassica juncea L. The immobilization onto SCAL1 by using SCH showed the best result compared to the liquid inoculum as carrier materials improve stability and shelf life. Furthermore, our results affirmed that carrier-based biofertilizers improved biochemical and physiological attributes of plants during drought conditions, highlighting their importance as a valuable resource for mitigating drought stress in Brassica juncea L. The findings revealed that carrier-based biofertilizers are an excellent source of diverse phytohormones, which are pivotal in alleviating drought stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信