建筑物改造对城市地表边界层湍流和传热的影响

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Seika Tanji , Tetsuya Takemi , Guangdong Duan
{"title":"建筑物改造对城市地表边界层湍流和传热的影响","authors":"Seika Tanji ,&nbsp;Tetsuya Takemi ,&nbsp;Guangdong Duan","doi":"10.1016/j.jweia.2024.105906","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines turbulent airflow and upward heat transport in real urban environments using a building-resolving large-eddy simulation model to understand the characteristics of turbulent airflow and upward heat transport when geometrical distributions of buildings are modified. The target areas were two real urban districts within Osaka City, Japan, having different morphological features. In the numerical experiments, the initial condition was set to a neutral condition in which temperature is uniformly distributed vertically, and buildings emitted heat at a constant rate. The results in the two districts indicated that the features of turbulence and heat transport distinctly differed with different building arrangement. Specifically, taller buildings significantly decelerated airflows and induced warming behind buildings. More high-rise buildings (which resulted in a larger building variability) in a district with a larger building density caused a large heat flux and warming at higher levels. The sensitivity experiments in which a density and height variability of buildings were modified showed that a building density at higher levels and a building height variability significantly influenced warming at upper levels. An increased building height variability weakened wind speed and disturbed horizontal heat advection, whereas a large building density caused numerous heat sources.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105906"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of building modifications on the turbulent flow and heat transfer in urban surface boundary layers\",\"authors\":\"Seika Tanji ,&nbsp;Tetsuya Takemi ,&nbsp;Guangdong Duan\",\"doi\":\"10.1016/j.jweia.2024.105906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines turbulent airflow and upward heat transport in real urban environments using a building-resolving large-eddy simulation model to understand the characteristics of turbulent airflow and upward heat transport when geometrical distributions of buildings are modified. The target areas were two real urban districts within Osaka City, Japan, having different morphological features. In the numerical experiments, the initial condition was set to a neutral condition in which temperature is uniformly distributed vertically, and buildings emitted heat at a constant rate. The results in the two districts indicated that the features of turbulence and heat transport distinctly differed with different building arrangement. Specifically, taller buildings significantly decelerated airflows and induced warming behind buildings. More high-rise buildings (which resulted in a larger building variability) in a district with a larger building density caused a large heat flux and warming at higher levels. The sensitivity experiments in which a density and height variability of buildings were modified showed that a building density at higher levels and a building height variability significantly influenced warming at upper levels. An increased building height variability weakened wind speed and disturbed horizontal heat advection, whereas a large building density caused numerous heat sources.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"254 \",\"pages\":\"Article 105906\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002691\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002691","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用建筑物解析大涡流模拟模型对实际城市环境中的湍流气流和热量向上输送进行了研究,以了解建筑物几何分布发生改变时湍流气流和热量向上输送的特征。目标区域是日本大阪市内两个具有不同形态特征的真实城区。在数值实验中,初始条件设定为温度垂直均匀分布的中性条件,建筑物以恒定速率散发热量。两个地区的实验结果表明,湍流和热量传输的特征随着建筑物排列的不同而明显不同。具体而言,较高的建筑物会明显减慢气流速度,并导致建筑物后方升温。在一个建筑密度较大的地区,更多的高层建筑(这导致了更大的建筑变异性)导致了更高处的大量热通量和升温。修改建筑物密度和高度变化的敏感性实验表明,较高楼层的建筑物密度和建筑物高度变化对较高楼层的升温有显著影响。建筑物高度变化的增加削弱了风速,扰乱了水平热传导,而较大的建筑物密度则会造成大量热源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impacts of building modifications on the turbulent flow and heat transfer in urban surface boundary layers
This study examines turbulent airflow and upward heat transport in real urban environments using a building-resolving large-eddy simulation model to understand the characteristics of turbulent airflow and upward heat transport when geometrical distributions of buildings are modified. The target areas were two real urban districts within Osaka City, Japan, having different morphological features. In the numerical experiments, the initial condition was set to a neutral condition in which temperature is uniformly distributed vertically, and buildings emitted heat at a constant rate. The results in the two districts indicated that the features of turbulence and heat transport distinctly differed with different building arrangement. Specifically, taller buildings significantly decelerated airflows and induced warming behind buildings. More high-rise buildings (which resulted in a larger building variability) in a district with a larger building density caused a large heat flux and warming at higher levels. The sensitivity experiments in which a density and height variability of buildings were modified showed that a building density at higher levels and a building height variability significantly influenced warming at upper levels. An increased building height variability weakened wind speed and disturbed horizontal heat advection, whereas a large building density caused numerous heat sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信