拓扑结构(La,Sr)Co3-δ 薄膜中的应变-氧空位耦合

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Yichen Wu , Victor Rosendal , Milica Vasiljevic , Imran Asghar , Vincenzo Esposito
{"title":"拓扑结构(La,Sr)Co3-δ 薄膜中的应变-氧空位耦合","authors":"Yichen Wu ,&nbsp;Victor Rosendal ,&nbsp;Milica Vasiljevic ,&nbsp;Imran Asghar ,&nbsp;Vincenzo Esposito","doi":"10.1016/j.apsadv.2024.100644","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen defect engineering is a widely used approach for tuning physical properties in oxides. Multivalent transition metal oxide La<sub>0.7</sub>Sr<sub>0.3</sub>CoO<sub>3-δ</sub> (LSCO) shows oxygen vacancy-driven metal-to-insulator transition (MIT) due to topotactic phase transition and its high oxygen vacancy tolerance. Here, we introduce strain as a new degree of freedom to study the strain-oxygen vacancy coupling effects and elucidate its impact on the electronic property in oxygen-deficient LSCO epitaxial thin films grown on SrTiO<sub>3</sub> (100) single crystal. By combining the experimental results with density functional theory plus U (DFT+U) calculations, we reveal that 2.1 % <em>in-plane</em> tensile strain can stabilize the insulating state of LSCO with a surprisingly low concentration of oxygen vacancies, &lt;0.5 %. This study reveals that the MIT in LSCO is governed by the combination of oxygen vacancies and strain, offering the potential for additional tuning knob of the material's electronic properties.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"24 ","pages":"Article 100644"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-oxygen vacancies coupling in topotactic (La,Sr)Co3-δ thin films\",\"authors\":\"Yichen Wu ,&nbsp;Victor Rosendal ,&nbsp;Milica Vasiljevic ,&nbsp;Imran Asghar ,&nbsp;Vincenzo Esposito\",\"doi\":\"10.1016/j.apsadv.2024.100644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxygen defect engineering is a widely used approach for tuning physical properties in oxides. Multivalent transition metal oxide La<sub>0.7</sub>Sr<sub>0.3</sub>CoO<sub>3-δ</sub> (LSCO) shows oxygen vacancy-driven metal-to-insulator transition (MIT) due to topotactic phase transition and its high oxygen vacancy tolerance. Here, we introduce strain as a new degree of freedom to study the strain-oxygen vacancy coupling effects and elucidate its impact on the electronic property in oxygen-deficient LSCO epitaxial thin films grown on SrTiO<sub>3</sub> (100) single crystal. By combining the experimental results with density functional theory plus U (DFT+U) calculations, we reveal that 2.1 % <em>in-plane</em> tensile strain can stabilize the insulating state of LSCO with a surprisingly low concentration of oxygen vacancies, &lt;0.5 %. This study reveals that the MIT in LSCO is governed by the combination of oxygen vacancies and strain, offering the potential for additional tuning knob of the material's electronic properties.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"24 \",\"pages\":\"Article 100644\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523924000722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧缺陷工程是调整氧化物物理性质的一种广泛应用的方法。多价过渡金属氧化物 La0.7Sr0.3CoO3-δ(LSCO)因其拓扑相变和对氧空位的高耐受性而显示出氧空位驱动的金属到绝缘体转变(MIT)。在此,我们引入应变作为新的自由度来研究应变-氧空位耦合效应,并阐明其对生长在 SrTiO3 (100) 单晶上的缺氧 LSCO 外延薄膜电子特性的影响。通过将实验结果与密度泛函理论加 U(DFT+U)计算相结合,我们发现 2.1 % 的面内拉伸应变可以稳定 LSCO 的绝缘状态,而氧空位的浓度却低得惊人,仅为 0.5 %。这项研究揭示了 LSCO 中的 MIT 受氧空位和应变的共同作用,为进一步调整材料的电子特性提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain-oxygen vacancies coupling in topotactic (La,Sr)Co3-δ thin films
Oxygen defect engineering is a widely used approach for tuning physical properties in oxides. Multivalent transition metal oxide La0.7Sr0.3CoO3-δ (LSCO) shows oxygen vacancy-driven metal-to-insulator transition (MIT) due to topotactic phase transition and its high oxygen vacancy tolerance. Here, we introduce strain as a new degree of freedom to study the strain-oxygen vacancy coupling effects and elucidate its impact on the electronic property in oxygen-deficient LSCO epitaxial thin films grown on SrTiO3 (100) single crystal. By combining the experimental results with density functional theory plus U (DFT+U) calculations, we reveal that 2.1 % in-plane tensile strain can stabilize the insulating state of LSCO with a surprisingly low concentration of oxygen vacancies, <0.5 %. This study reveals that the MIT in LSCO is governed by the combination of oxygen vacancies and strain, offering the potential for additional tuning knob of the material's electronic properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信