{"title":"一种测量细菌培养物中柠檬酸盐含量的新颖、简单而快速的测定法,用于分析细菌对柠檬酸盐的消耗量","authors":"Rattiyaporn Kanlaya, Chonnicha Subkod, Visith Thongboonkerd","doi":"10.1016/j.talo.2024.100360","DOIUrl":null,"url":null,"abstract":"<div><div>Citrate is essential for Krebs cycle in eukaryotes and serves as a carbon source for some bacteria to survive/grow. Available methods for measuring citrate level rely mainly on enzymatic reactions and/or sophisticated instrumentations. This study aimed to develop a novel, simple and rapid assay to quantify citrate in bacterial culture for analysis of citrate consumption. The assay was initially tested with 0.1–25.6 mM citrate in deionized (dI) water or complete M9 medium without/with 0.25 M HCl. Wavelength scan revealed maximum absorption of citrate at λ210 nm with linear calibration curve (R<sup>2</sup> = 0.9997–0.9999) when HCl was added. Among negatively charged chemicals tested, only oxalate interfered with the assay. After 24-h inoculation of <em>Klebsiella pneumoniae</em> (the known citrate-utilizing bacterium) in (20 mM) citrate-containing complete M9 medium, the remaining citrate significantly decreased (by 22.20±7.13 % consumption). However, a mild decrease was also observed in the sample without bacterial inoculation, suggesting that some components of the complete medium interfered with the assay. It was clearly evidenced that M9 salt, CaCl<sub>2</sub> and/or MgSO<sub>4</sub> were responsible for such interference. Finally, citrate at low concentrations (0.1–6.4 mM) in M9 medium with CaCl<sub>2</sub> and/or MgSO<sub>4</sub> provided the linear calibration curve (R<sup>2</sup> = 0.9451–0.9986). At 5 mM, citrate consumption by <em>K. pneumoniae</em> after 24-h culture was 46.88±0.47 %. In summary, we have successfully developed a novel, simple and rapid method for measuring citrate level in bacterial culture. It will be very useful for measuring citrate consumption by typical and atypical citrate-utilizing bacteria for classification, mechanistic and pathophysiologic studies.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100360"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel, simple and rapid assay to measure citrate level in bacterial culture for analysis of citrate consumption by bacteria\",\"authors\":\"Rattiyaporn Kanlaya, Chonnicha Subkod, Visith Thongboonkerd\",\"doi\":\"10.1016/j.talo.2024.100360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Citrate is essential for Krebs cycle in eukaryotes and serves as a carbon source for some bacteria to survive/grow. Available methods for measuring citrate level rely mainly on enzymatic reactions and/or sophisticated instrumentations. This study aimed to develop a novel, simple and rapid assay to quantify citrate in bacterial culture for analysis of citrate consumption. The assay was initially tested with 0.1–25.6 mM citrate in deionized (dI) water or complete M9 medium without/with 0.25 M HCl. Wavelength scan revealed maximum absorption of citrate at λ210 nm with linear calibration curve (R<sup>2</sup> = 0.9997–0.9999) when HCl was added. Among negatively charged chemicals tested, only oxalate interfered with the assay. After 24-h inoculation of <em>Klebsiella pneumoniae</em> (the known citrate-utilizing bacterium) in (20 mM) citrate-containing complete M9 medium, the remaining citrate significantly decreased (by 22.20±7.13 % consumption). However, a mild decrease was also observed in the sample without bacterial inoculation, suggesting that some components of the complete medium interfered with the assay. It was clearly evidenced that M9 salt, CaCl<sub>2</sub> and/or MgSO<sub>4</sub> were responsible for such interference. Finally, citrate at low concentrations (0.1–6.4 mM) in M9 medium with CaCl<sub>2</sub> and/or MgSO<sub>4</sub> provided the linear calibration curve (R<sup>2</sup> = 0.9451–0.9986). At 5 mM, citrate consumption by <em>K. pneumoniae</em> after 24-h culture was 46.88±0.47 %. In summary, we have successfully developed a novel, simple and rapid method for measuring citrate level in bacterial culture. It will be very useful for measuring citrate consumption by typical and atypical citrate-utilizing bacteria for classification, mechanistic and pathophysiologic studies.</div></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"10 \",\"pages\":\"Article 100360\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A novel, simple and rapid assay to measure citrate level in bacterial culture for analysis of citrate consumption by bacteria
Citrate is essential for Krebs cycle in eukaryotes and serves as a carbon source for some bacteria to survive/grow. Available methods for measuring citrate level rely mainly on enzymatic reactions and/or sophisticated instrumentations. This study aimed to develop a novel, simple and rapid assay to quantify citrate in bacterial culture for analysis of citrate consumption. The assay was initially tested with 0.1–25.6 mM citrate in deionized (dI) water or complete M9 medium without/with 0.25 M HCl. Wavelength scan revealed maximum absorption of citrate at λ210 nm with linear calibration curve (R2 = 0.9997–0.9999) when HCl was added. Among negatively charged chemicals tested, only oxalate interfered with the assay. After 24-h inoculation of Klebsiella pneumoniae (the known citrate-utilizing bacterium) in (20 mM) citrate-containing complete M9 medium, the remaining citrate significantly decreased (by 22.20±7.13 % consumption). However, a mild decrease was also observed in the sample without bacterial inoculation, suggesting that some components of the complete medium interfered with the assay. It was clearly evidenced that M9 salt, CaCl2 and/or MgSO4 were responsible for such interference. Finally, citrate at low concentrations (0.1–6.4 mM) in M9 medium with CaCl2 and/or MgSO4 provided the linear calibration curve (R2 = 0.9451–0.9986). At 5 mM, citrate consumption by K. pneumoniae after 24-h culture was 46.88±0.47 %. In summary, we have successfully developed a novel, simple and rapid method for measuring citrate level in bacterial culture. It will be very useful for measuring citrate consumption by typical and atypical citrate-utilizing bacteria for classification, mechanistic and pathophysiologic studies.