{"title":"具有优异高温耐磨性和自润滑性能的新型镍基合金堆焊层的微观结构和摩擦学性能","authors":"","doi":"10.1016/j.surfcoat.2024.131395","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to study the laser cladding of Ni-based alloy coatings with excellent high temperature wear resistance and self-lubrication performance on the surface of parts such that meet complex metallurgical service conditions. The composite alloy powders were formed by adding 3 wt%–11 wt% WS<sub>2</sub> and Ti powder to NiCrCoMoBSi alloy powder, and the novel Ni-based alloy samples with high temperature wear resistance and self-lubrication performance were cladded on the surface of Cr28Ni48W5 substrate by laser cladding. The results show that the addition of WS<sub>2</sub> and Ti powder had a significant influence on the microstructure evolution and high temperature wear resistance and self-lubrication performance of the samples. The laser cladding coating with 7 wt% WS<sub>2</sub> and Ti had the 3 % TiS self-lubricating phase and 19 % enhanced phase with the best microstructure matching relationship, which improved the high temperature wear resistance and self-lubrication performance of the sample. At 800 °C, compared with the Cr28Ni48W5 superalloy substrate, the friction coefficient of the laser cladding coating was 0.22 and the wear ratio was 1.70 × 10<sup>−5</sup> mm<sup>3</sup> N<sup>−1</sup> m<sup>−1</sup>, which were reduced by 60 % and 54.67 % respectively. The mechanism of the enhanced wear resistance and self-lubrication performance was elaborated.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and tribological performance of novel Ni-based alloy cladding with excellent high temperature wear resistance and self-lubrication performance\",\"authors\":\"\",\"doi\":\"10.1016/j.surfcoat.2024.131395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper aims to study the laser cladding of Ni-based alloy coatings with excellent high temperature wear resistance and self-lubrication performance on the surface of parts such that meet complex metallurgical service conditions. The composite alloy powders were formed by adding 3 wt%–11 wt% WS<sub>2</sub> and Ti powder to NiCrCoMoBSi alloy powder, and the novel Ni-based alloy samples with high temperature wear resistance and self-lubrication performance were cladded on the surface of Cr28Ni48W5 substrate by laser cladding. The results show that the addition of WS<sub>2</sub> and Ti powder had a significant influence on the microstructure evolution and high temperature wear resistance and self-lubrication performance of the samples. The laser cladding coating with 7 wt% WS<sub>2</sub> and Ti had the 3 % TiS self-lubricating phase and 19 % enhanced phase with the best microstructure matching relationship, which improved the high temperature wear resistance and self-lubrication performance of the sample. At 800 °C, compared with the Cr28Ni48W5 superalloy substrate, the friction coefficient of the laser cladding coating was 0.22 and the wear ratio was 1.70 × 10<sup>−5</sup> mm<sup>3</sup> N<sup>−1</sup> m<sup>−1</sup>, which were reduced by 60 % and 54.67 % respectively. The mechanism of the enhanced wear resistance and self-lubrication performance was elaborated.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224010260\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224010260","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Microstructure and tribological performance of novel Ni-based alloy cladding with excellent high temperature wear resistance and self-lubrication performance
This paper aims to study the laser cladding of Ni-based alloy coatings with excellent high temperature wear resistance and self-lubrication performance on the surface of parts such that meet complex metallurgical service conditions. The composite alloy powders were formed by adding 3 wt%–11 wt% WS2 and Ti powder to NiCrCoMoBSi alloy powder, and the novel Ni-based alloy samples with high temperature wear resistance and self-lubrication performance were cladded on the surface of Cr28Ni48W5 substrate by laser cladding. The results show that the addition of WS2 and Ti powder had a significant influence on the microstructure evolution and high temperature wear resistance and self-lubrication performance of the samples. The laser cladding coating with 7 wt% WS2 and Ti had the 3 % TiS self-lubricating phase and 19 % enhanced phase with the best microstructure matching relationship, which improved the high temperature wear resistance and self-lubrication performance of the sample. At 800 °C, compared with the Cr28Ni48W5 superalloy substrate, the friction coefficient of the laser cladding coating was 0.22 and the wear ratio was 1.70 × 10−5 mm3 N−1 m−1, which were reduced by 60 % and 54.67 % respectively. The mechanism of the enhanced wear resistance and self-lubrication performance was elaborated.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.