基于气象输入预测粮堆湿度的先进混合经验模式分解、卷积神经网络和长短期记忆神经网络方法

IF 2.7 2区 农林科学 Q1 ENTOMOLOGY
{"title":"基于气象输入预测粮堆湿度的先进混合经验模式分解、卷积神经网络和长短期记忆神经网络方法","authors":"","doi":"10.1016/j.jspr.2024.102427","DOIUrl":null,"url":null,"abstract":"<div><div>Grain pile humidity prediction is beneficial to ensure food security, and establishing an effective humidity prediction model is of great significance to the field of grain storage. By taking meteorological and grain temperature data as inputs, we propose a prediction model that combines Empirical Mode Decomposition (EMD), Convolutional Neural Network (CNN), and Long Short-Term Memory Network (LSTM). The model was verified in experimental data of three different storage layers of grain piles. The prediction results show that the proposed EMD-CNN-LSTM model has better prediction accuracy than the other three comparison models: CNN-LSTM, CNN and LSTM. From the average results of the entire granary, the MAE, RMSE, and MAPE results are 0.14, 0.18, and 0.25%, respectively, and the MAE value is 44% higher than the previous research method that does not consider meteorological factors. The MAE, RMSE, and MAPE results of the CNN-LSTM method with EMD decomposition were improved by 58%, 53% and 58% respectively compared with the method without EMD decomposition. It can be concluded that taking meteorological factors as model input and integrating EMD methods can improve prediction accuracy. The constructed prediction model shows effective prediction results in different storage layers of grain pile, which provides new insights for ensuring food security and also provides valuable references for multivariate time series prediction in other fields.</div></div>","PeriodicalId":17019,"journal":{"name":"Journal of Stored Products Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced hybrid empirical mode decomposition, convolutional neural network and long short-term memory neural network approach for predicting grain pile humidity based on meteorological inputs\",\"authors\":\"\",\"doi\":\"10.1016/j.jspr.2024.102427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain pile humidity prediction is beneficial to ensure food security, and establishing an effective humidity prediction model is of great significance to the field of grain storage. By taking meteorological and grain temperature data as inputs, we propose a prediction model that combines Empirical Mode Decomposition (EMD), Convolutional Neural Network (CNN), and Long Short-Term Memory Network (LSTM). The model was verified in experimental data of three different storage layers of grain piles. The prediction results show that the proposed EMD-CNN-LSTM model has better prediction accuracy than the other three comparison models: CNN-LSTM, CNN and LSTM. From the average results of the entire granary, the MAE, RMSE, and MAPE results are 0.14, 0.18, and 0.25%, respectively, and the MAE value is 44% higher than the previous research method that does not consider meteorological factors. The MAE, RMSE, and MAPE results of the CNN-LSTM method with EMD decomposition were improved by 58%, 53% and 58% respectively compared with the method without EMD decomposition. It can be concluded that taking meteorological factors as model input and integrating EMD methods can improve prediction accuracy. The constructed prediction model shows effective prediction results in different storage layers of grain pile, which provides new insights for ensuring food security and also provides valuable references for multivariate time series prediction in other fields.</div></div>\",\"PeriodicalId\":17019,\"journal\":{\"name\":\"Journal of Stored Products Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stored Products Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022474X2400184X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stored Products Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022474X2400184X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

粮堆湿度预测有利于确保粮食安全,建立有效的湿度预测模型对粮食储藏领域意义重大。以气象和粮温数据为输入,我们提出了一个结合经验模式分解(EMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的预测模型。该模型在三个不同储粮层的粮堆实验数据中得到了验证。预测结果表明,所提出的 EMD-CNN-LSTM 模型比其他三个比较模型具有更好的预测精度:CNN-LSTM、CNN 和 LSTM。从整个粮仓的平均结果来看,MAE、RMSE 和 MAPE 结果分别为 0.14、0.18 和 0.25%,MAE 值比之前不考虑气象因素的研究方法高出 44%。与未进行 EMD 分解的方法相比,进行了 EMD 分解的 CNN-LSTM 方法的 MAE、RMSE 和 MAPE 结果分别提高了 58%、53% 和 58%。由此可以得出结论,将气象因素作为模型输入并结合 EMD 方法可以提高预测精度。所构建的预测模型在不同粮堆储藏层显示了有效的预测结果,为确保粮食安全提供了新的见解,也为其他领域的多变量时间序列预测提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced hybrid empirical mode decomposition, convolutional neural network and long short-term memory neural network approach for predicting grain pile humidity based on meteorological inputs
Grain pile humidity prediction is beneficial to ensure food security, and establishing an effective humidity prediction model is of great significance to the field of grain storage. By taking meteorological and grain temperature data as inputs, we propose a prediction model that combines Empirical Mode Decomposition (EMD), Convolutional Neural Network (CNN), and Long Short-Term Memory Network (LSTM). The model was verified in experimental data of three different storage layers of grain piles. The prediction results show that the proposed EMD-CNN-LSTM model has better prediction accuracy than the other three comparison models: CNN-LSTM, CNN and LSTM. From the average results of the entire granary, the MAE, RMSE, and MAPE results are 0.14, 0.18, and 0.25%, respectively, and the MAE value is 44% higher than the previous research method that does not consider meteorological factors. The MAE, RMSE, and MAPE results of the CNN-LSTM method with EMD decomposition were improved by 58%, 53% and 58% respectively compared with the method without EMD decomposition. It can be concluded that taking meteorological factors as model input and integrating EMD methods can improve prediction accuracy. The constructed prediction model shows effective prediction results in different storage layers of grain pile, which provides new insights for ensuring food security and also provides valuable references for multivariate time series prediction in other fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
18.50%
发文量
112
审稿时长
45 days
期刊介绍: The Journal of Stored Products Research provides an international medium for the publication of both reviews and original results from laboratory and field studies on the preservation and safety of stored products, notably food stocks, covering storage-related problems from the producer through the supply chain to the consumer. Stored products are characterised by having relatively low moisture content and include raw and semi-processed foods, animal feedstuffs, and a range of other durable items, including materials such as clothing or museum artefacts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信