Omar S. Mahdy , Ali B.M. Ali , Marwah Sabah Mahdi , Dheyaa J. Jasim , Hamed Kazemi-Varnamkhasti , Mohammad Goli , Soheil Salahshour , Sh. Baghaei
{"title":"装有热块的腔体内纳米流体自然对流磁流体力学的热性能","authors":"Omar S. Mahdy , Ali B.M. Ali , Marwah Sabah Mahdi , Dheyaa J. Jasim , Hamed Kazemi-Varnamkhasti , Mohammad Goli , Soheil Salahshour , Sh. Baghaei","doi":"10.1016/j.ijft.2024.100873","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, flow and free convection thermal performance within a chamber in the presence of a permanent magnetic field are simulated. Boussinesq approximation and the Lorentz force equation are used for the density variation in free convection, and the magnetic field, respectively. The steady-state, two-dimensional, and incompressible governing equations are simulated using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The present study is simulated for different Rayleigh numbers (Ra) corresponding to the situation where the conduction mechanism was predominant (<em>Ra</em> = 100) and the convection heat transfer was predominant (<em>Ra</em> = 10<sup>5</sup>). Also, different intensities of the magnetic field (0 ≤ <em>Ha</em> ≤ 40) and different directions of the magnetic field along with the effects of three different nanoparticles Ag, Cu, and <em>Al</em><sub>2</sub><em>O</em><sub>3</sub> are given. The present study showed that in the case of the dominant convection mechanism, the presence of the magnetohydrodynamics (MHD) condition decreases the Nusselt number (Nu). However, if the conduction is predominant, the applied magnetic field improves the average Nu number. The optimum state for the magnetic field strength was found in the low Rayleigh number. The presence of nanoparticles also intensifies the magnetic field effects. In the high Rayleigh number, the heat transfer rate reduces by 13.5% with the increase of the Hartmann number.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100873"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of nanofluid natural convection magneto-hydrodynamics within a chamber equipped with a hot block\",\"authors\":\"Omar S. Mahdy , Ali B.M. Ali , Marwah Sabah Mahdi , Dheyaa J. Jasim , Hamed Kazemi-Varnamkhasti , Mohammad Goli , Soheil Salahshour , Sh. Baghaei\",\"doi\":\"10.1016/j.ijft.2024.100873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, flow and free convection thermal performance within a chamber in the presence of a permanent magnetic field are simulated. Boussinesq approximation and the Lorentz force equation are used for the density variation in free convection, and the magnetic field, respectively. The steady-state, two-dimensional, and incompressible governing equations are simulated using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The present study is simulated for different Rayleigh numbers (Ra) corresponding to the situation where the conduction mechanism was predominant (<em>Ra</em> = 100) and the convection heat transfer was predominant (<em>Ra</em> = 10<sup>5</sup>). Also, different intensities of the magnetic field (0 ≤ <em>Ha</em> ≤ 40) and different directions of the magnetic field along with the effects of three different nanoparticles Ag, Cu, and <em>Al</em><sub>2</sub><em>O</em><sub>3</sub> are given. The present study showed that in the case of the dominant convection mechanism, the presence of the magnetohydrodynamics (MHD) condition decreases the Nusselt number (Nu). However, if the conduction is predominant, the applied magnetic field improves the average Nu number. The optimum state for the magnetic field strength was found in the low Rayleigh number. The presence of nanoparticles also intensifies the magnetic field effects. In the high Rayleigh number, the heat transfer rate reduces by 13.5% with the increase of the Hartmann number.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"24 \",\"pages\":\"Article 100873\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202724003148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
摘要
本研究模拟了存在永久磁场的腔体内的流动和自由对流热性能。自由对流中的密度变化和磁场分别采用了布森斯克近似和洛伦兹力方程。使用压力关联方程半隐式方法(SIMPLE)模拟了稳态、二维和不可压缩的控制方程。本研究针对不同的瑞利数(Ra)进行了模拟,分别对应传导机制占主导地位(Ra = 100)和对流传热占主导地位(Ra = 105)的情况。此外,还给出了不同的磁场强度(0 ≤ Ha ≤ 40)和不同的磁场方向,以及 Ag、Cu 和 Al2O3 三种不同纳米粒子的影响。本研究表明,在对流机制占主导地位的情况下,磁流体力学(MHD)条件的存在会降低努塞尔特数(Nu)。然而,如果传导占主导地位,则外加磁场会提高平均 Nu 数。磁场强度的最佳状态是雷利数较低时。纳米粒子的存在也会增强磁场效应。在高雷利数下,随着哈特曼数的增加,传热率降低了 13.5%。
Thermal performance of nanofluid natural convection magneto-hydrodynamics within a chamber equipped with a hot block
In this study, flow and free convection thermal performance within a chamber in the presence of a permanent magnetic field are simulated. Boussinesq approximation and the Lorentz force equation are used for the density variation in free convection, and the magnetic field, respectively. The steady-state, two-dimensional, and incompressible governing equations are simulated using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The present study is simulated for different Rayleigh numbers (Ra) corresponding to the situation where the conduction mechanism was predominant (Ra = 100) and the convection heat transfer was predominant (Ra = 105). Also, different intensities of the magnetic field (0 ≤ Ha ≤ 40) and different directions of the magnetic field along with the effects of three different nanoparticles Ag, Cu, and Al2O3 are given. The present study showed that in the case of the dominant convection mechanism, the presence of the magnetohydrodynamics (MHD) condition decreases the Nusselt number (Nu). However, if the conduction is predominant, the applied magnetic field improves the average Nu number. The optimum state for the magnetic field strength was found in the low Rayleigh number. The presence of nanoparticles also intensifies the magnetic field effects. In the high Rayleigh number, the heat transfer rate reduces by 13.5% with the increase of the Hartmann number.