约束多模态多目标优化的动态等级辅助协同进化算法

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guoqing Li , Weiwei Zhang , Caitong Yue , Yirui Wang , Yu Xin , Kui Gao
{"title":"约束多模态多目标优化的动态等级辅助协同进化算法","authors":"Guoqing Li ,&nbsp;Weiwei Zhang ,&nbsp;Caitong Yue ,&nbsp;Yirui Wang ,&nbsp;Yu Xin ,&nbsp;Kui Gao","doi":"10.1016/j.swevo.2024.101744","DOIUrl":null,"url":null,"abstract":"<div><div>Constrained multimodal multi-objective optimization problems (CMMOPs) are characterized by multiple constrained Pareto sets (CPSs) sharing the same constrained Pareto front (CPF). The challenge lies in efficiently identifying equivalent CPSs while maintaining a balance among convergence, diversity, and constraints. Addressing this challenge, we propose a dynamic-ranking-based constraint handling technique implemented in a co-evolutionary algorithm, named DRCEA, specifically designed for solving CMMOPs. To search for equivalent CPSs, we introduce a co-evolutionary framework involving two populations: a convergence-first population and a constraint-first population. The co-evolutionary framework facilitates knowledge transfer and sustains diverse solutions. Subsequently, a dynamic ranking strategy is employed with dynamic weight parameters that consider both dominance and constraint relationships among individuals. Within the convergence-first population, the weight parameter for convergence gradually decreases, while the constraint parameter increases. Conversely, in the constraint-first population, the weight parameter for constraints gradually decreases, while the convergence parameter increases. This approach ensures a well-balanced consideration of convergence and constraints within the two distinct populations. Experimental results on the CMMOP test suite and the real-world CMMOP test scenario validate the effectiveness of the proposed dynamic-ranking-based constraint handling technique, demonstrating the superiority of DRCEA over seven state-of-the-art algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101744"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic-ranking-assisted co-evolutionary algorithm for constrained multimodal multi-objective optimization\",\"authors\":\"Guoqing Li ,&nbsp;Weiwei Zhang ,&nbsp;Caitong Yue ,&nbsp;Yirui Wang ,&nbsp;Yu Xin ,&nbsp;Kui Gao\",\"doi\":\"10.1016/j.swevo.2024.101744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constrained multimodal multi-objective optimization problems (CMMOPs) are characterized by multiple constrained Pareto sets (CPSs) sharing the same constrained Pareto front (CPF). The challenge lies in efficiently identifying equivalent CPSs while maintaining a balance among convergence, diversity, and constraints. Addressing this challenge, we propose a dynamic-ranking-based constraint handling technique implemented in a co-evolutionary algorithm, named DRCEA, specifically designed for solving CMMOPs. To search for equivalent CPSs, we introduce a co-evolutionary framework involving two populations: a convergence-first population and a constraint-first population. The co-evolutionary framework facilitates knowledge transfer and sustains diverse solutions. Subsequently, a dynamic ranking strategy is employed with dynamic weight parameters that consider both dominance and constraint relationships among individuals. Within the convergence-first population, the weight parameter for convergence gradually decreases, while the constraint parameter increases. Conversely, in the constraint-first population, the weight parameter for constraints gradually decreases, while the convergence parameter increases. This approach ensures a well-balanced consideration of convergence and constraints within the two distinct populations. Experimental results on the CMMOP test suite and the real-world CMMOP test scenario validate the effectiveness of the proposed dynamic-ranking-based constraint handling technique, demonstrating the superiority of DRCEA over seven state-of-the-art algorithms.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101744\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002827\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002827","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

受限多模式多目标优化问题(CMMOPs)的特点是多个受限帕累托集(CPSs)共享同一个受限帕累托前沿(CPF)。如何在保持收敛性、多样性和约束之间的平衡的同时,高效地识别等效的 CPS 是一个挑战。为了应对这一挑战,我们提出了一种基于动态排序的约束处理技术,并将其应用于协同进化算法中,该算法被命名为 DRCEA,专门用于求解 CMMOP。为了搜索等效的 CPS,我们引入了一个共同进化框架,其中涉及两个种群:收敛优先种群和约束优先种群。共同进化框架促进了知识转移,并维持了多样化的解决方案。随后,我们采用了一种动态排序策略,其动态权重参数既考虑了个体间的支配关系,也考虑了个体间的约束关系。在收敛优先群体中,收敛权重参数会逐渐降低,而约束参数则会增加。反之,在约束优先群体中,约束的权重参数逐渐减小,而收敛的权重参数逐渐增大。这种方法确保了在两个不同的群体中对收敛和约束的均衡考虑。CMMOP 测试套件和实际 CMMOP 测试场景的实验结果验证了所提出的基于动态排序的约束处理技术的有效性,表明 DRCEA 优于七种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic-ranking-assisted co-evolutionary algorithm for constrained multimodal multi-objective optimization
Constrained multimodal multi-objective optimization problems (CMMOPs) are characterized by multiple constrained Pareto sets (CPSs) sharing the same constrained Pareto front (CPF). The challenge lies in efficiently identifying equivalent CPSs while maintaining a balance among convergence, diversity, and constraints. Addressing this challenge, we propose a dynamic-ranking-based constraint handling technique implemented in a co-evolutionary algorithm, named DRCEA, specifically designed for solving CMMOPs. To search for equivalent CPSs, we introduce a co-evolutionary framework involving two populations: a convergence-first population and a constraint-first population. The co-evolutionary framework facilitates knowledge transfer and sustains diverse solutions. Subsequently, a dynamic ranking strategy is employed with dynamic weight parameters that consider both dominance and constraint relationships among individuals. Within the convergence-first population, the weight parameter for convergence gradually decreases, while the constraint parameter increases. Conversely, in the constraint-first population, the weight parameter for constraints gradually decreases, while the convergence parameter increases. This approach ensures a well-balanced consideration of convergence and constraints within the two distinct populations. Experimental results on the CMMOP test suite and the real-world CMMOP test scenario validate the effectiveness of the proposed dynamic-ranking-based constraint handling technique, demonstrating the superiority of DRCEA over seven state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信