{"title":"近耦合气体雾化中一次分裂的实验研究","authors":"T. Cheng , R. Leibovici , B. Kong , R. van Hout","doi":"10.1016/j.ijmultiphaseflow.2024.105009","DOIUrl":null,"url":null,"abstract":"<div><div>Primary breakup of a liquid water jet in close-coupled gas atomization (CCGA) was studied using digital inline holography. Different nozzles with constant liquid protrusion length and characterized by three different apex angles, <span><math><mi>θ</mi></math></span> = 14<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>, 24<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> and 34<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> were used. Measurements were conducted at two Weber numbers, We<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> = 57.5 and 82.5. At each We<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span>, five different momentum flux ratios, <span><math><mi>M</mi></math></span>, were studied. A detailed analysis of the instantaneous liquid jet interfaces indicated that the “filming” occurred at a lower critical <span><math><mi>M</mi></math></span> with increasing <span><math><mi>θ</mi></math></span>. Furthermore, with increasing <span><math><mi>M</mi></math></span>, peak probabilities of interface lengths shifted to larger values while increasing <span><math><mi>θ</mi></math></span> led to increased maximum lengths. Fractal dimensions increased with downstream distance. Distributions of area-based droplet diameters spanned a broad size range up to 3 mm and were well described by least-squares fitted power laws, including an exponential cut-off. The highest number of droplets was generated at <span><math><mi>θ</mi></math></span> = 24<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> for <span><math><mi>M</mi></math></span> = 1.67 and 2.40 for We<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> = 57.5 and 82.5, respectively. The percentage of circular droplets (based on a circularity-based threshold) was highest at <span><math><mi>θ</mi></math></span> = 14<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> and decreased with increasing <span><math><mi>M</mi></math></span>.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 105009"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of primary breakup in close-coupled gas atomization\",\"authors\":\"T. Cheng , R. Leibovici , B. Kong , R. van Hout\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.105009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Primary breakup of a liquid water jet in close-coupled gas atomization (CCGA) was studied using digital inline holography. Different nozzles with constant liquid protrusion length and characterized by three different apex angles, <span><math><mi>θ</mi></math></span> = 14<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>, 24<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> and 34<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> were used. Measurements were conducted at two Weber numbers, We<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> = 57.5 and 82.5. At each We<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span>, five different momentum flux ratios, <span><math><mi>M</mi></math></span>, were studied. A detailed analysis of the instantaneous liquid jet interfaces indicated that the “filming” occurred at a lower critical <span><math><mi>M</mi></math></span> with increasing <span><math><mi>θ</mi></math></span>. Furthermore, with increasing <span><math><mi>M</mi></math></span>, peak probabilities of interface lengths shifted to larger values while increasing <span><math><mi>θ</mi></math></span> led to increased maximum lengths. Fractal dimensions increased with downstream distance. Distributions of area-based droplet diameters spanned a broad size range up to 3 mm and were well described by least-squares fitted power laws, including an exponential cut-off. The highest number of droplets was generated at <span><math><mi>θ</mi></math></span> = 24<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> for <span><math><mi>M</mi></math></span> = 1.67 and 2.40 for We<span><math><msub><mrow></mrow><mrow><mi>g</mi></mrow></msub></math></span> = 57.5 and 82.5, respectively. The percentage of circular droplets (based on a circularity-based threshold) was highest at <span><math><mi>θ</mi></math></span> = 14<span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span> and decreased with increasing <span><math><mi>M</mi></math></span>.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"181 \",\"pages\":\"Article 105009\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002866\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002866","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Experimental investigation of primary breakup in close-coupled gas atomization
Primary breakup of a liquid water jet in close-coupled gas atomization (CCGA) was studied using digital inline holography. Different nozzles with constant liquid protrusion length and characterized by three different apex angles, = 14, 24 and 34 were used. Measurements were conducted at two Weber numbers, We = 57.5 and 82.5. At each We, five different momentum flux ratios, , were studied. A detailed analysis of the instantaneous liquid jet interfaces indicated that the “filming” occurred at a lower critical with increasing . Furthermore, with increasing , peak probabilities of interface lengths shifted to larger values while increasing led to increased maximum lengths. Fractal dimensions increased with downstream distance. Distributions of area-based droplet diameters spanned a broad size range up to 3 mm and were well described by least-squares fitted power laws, including an exponential cut-off. The highest number of droplets was generated at = 24 for = 1.67 and 2.40 for We = 57.5 and 82.5, respectively. The percentage of circular droplets (based on a circularity-based threshold) was highest at = 14 and decreased with increasing .
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.