氧还原表面封端 MXenes 作为增强型可逆二氧化碳锂电池的阴极

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Huan Liu , Hongjuan Lai , Bin Cao , Xue Tian , Di Zhang , Razium Ali Soomro , Yi Wu
{"title":"氧还原表面封端 MXenes 作为增强型可逆二氧化碳锂电池的阴极","authors":"Huan Liu ,&nbsp;Hongjuan Lai ,&nbsp;Bin Cao ,&nbsp;Xue Tian ,&nbsp;Di Zhang ,&nbsp;Razium Ali Soomro ,&nbsp;Yi Wu","doi":"10.1016/j.carbon.2024.119676","DOIUrl":null,"url":null,"abstract":"<div><div>Li–CO<sub>2</sub> batteries have garnered global attention due to their dual attributes of high energy density and effective CO<sub>2</sub> capture. However, they still face a formidable challenge in decomposing the discharge products Li<sub>2</sub>CO<sub>3</sub>, resulting in subpar battery performance. MXene has been proposed as a promising candidate owing to its high electrical conductivity and effective CO<sub>2</sub> activation performance. Nevertheless, unavoidable surface terminations (such as –O and –OH) during synthesis strongly influence their catalytic properties, posing a significant hurdle for high-performance Li–CO<sub>2</sub> batteries. Herein, a thermal annealing approach is proposed to control the surface termination groups of MXene to reduce the generation of lithium hydroxide byproducts, thereby accelerating Li<sub>2</sub>CO<sub>3</sub> decomposition kinetics and enhancing the reversibility of the battery. The systematic annealing of MXene in the range of 500–800 °C confirmed optimal surface terminations at 500 °C (TC500). The TC500, when tested as a catalyst in a Li–CO<sub>2</sub> battery, exhibited enhanced performance metrics, such as low voltage gap (1.98 V), high specific capacity (15,740.38 mA h g<sup>−1</sup> at 100 mA g<sup>−1</sup>), and prolonged cycle stability (700 h at 200 mA g<sup>−1</sup>). The proposed work offers an effective strategy for regulating MXene surface termination groups via simple annealing treatments to achieve high-performance Li–CO<sub>2</sub> batteries.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"230 ","pages":"Article 119676"},"PeriodicalIF":10.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-reduced surface-terminated MXenes as cathodes for enhanced reversible Li–CO2 batteries\",\"authors\":\"Huan Liu ,&nbsp;Hongjuan Lai ,&nbsp;Bin Cao ,&nbsp;Xue Tian ,&nbsp;Di Zhang ,&nbsp;Razium Ali Soomro ,&nbsp;Yi Wu\",\"doi\":\"10.1016/j.carbon.2024.119676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Li–CO<sub>2</sub> batteries have garnered global attention due to their dual attributes of high energy density and effective CO<sub>2</sub> capture. However, they still face a formidable challenge in decomposing the discharge products Li<sub>2</sub>CO<sub>3</sub>, resulting in subpar battery performance. MXene has been proposed as a promising candidate owing to its high electrical conductivity and effective CO<sub>2</sub> activation performance. Nevertheless, unavoidable surface terminations (such as –O and –OH) during synthesis strongly influence their catalytic properties, posing a significant hurdle for high-performance Li–CO<sub>2</sub> batteries. Herein, a thermal annealing approach is proposed to control the surface termination groups of MXene to reduce the generation of lithium hydroxide byproducts, thereby accelerating Li<sub>2</sub>CO<sub>3</sub> decomposition kinetics and enhancing the reversibility of the battery. The systematic annealing of MXene in the range of 500–800 °C confirmed optimal surface terminations at 500 °C (TC500). The TC500, when tested as a catalyst in a Li–CO<sub>2</sub> battery, exhibited enhanced performance metrics, such as low voltage gap (1.98 V), high specific capacity (15,740.38 mA h g<sup>−1</sup> at 100 mA g<sup>−1</sup>), and prolonged cycle stability (700 h at 200 mA g<sup>−1</sup>). The proposed work offers an effective strategy for regulating MXene surface termination groups via simple annealing treatments to achieve high-performance Li–CO<sub>2</sub> batteries.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"230 \",\"pages\":\"Article 119676\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324008959\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324008959","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂-二氧化碳电池因其高能量密度和有效捕获二氧化碳的双重特性而备受全球关注。然而,它们在分解放电产物 Li2CO3 方面仍面临着巨大挑战,导致电池性能不佳。由于具有高导电性和有效的二氧化碳活化性能,MXene 被认为是一种很有前途的候选材料。然而,在合成过程中不可避免的表面终止(如 -O 和 -OH)会严重影响其催化性能,从而对高性能锂-CO2 电池构成重大障碍。本文提出了一种热退火方法来控制 MXene 的表面终止基团,以减少氢氧化锂副产物的生成,从而加速 Li2CO3 的分解动力学并提高电池的可逆性。在 500-800 °C 范围内对 MXene 进行的系统退火确认了 500 °C 时的最佳表面端接(TC500)。在锂-CO2 电池中作为催化剂进行测试时,TC500 表现出更高的性能指标,如低电压间隙(1.98 V)、高比容量(100 mA g-1 时为 15,740.38 mA h g-1)和更长的循环稳定性(200 mA g-1 时为 700 h)。这项工作提供了一种有效的策略,通过简单的退火处理调节 MXene 表面的终止基团,从而实现高性能的锂-二氧化碳电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen-reduced surface-terminated MXenes as cathodes for enhanced reversible Li–CO2 batteries

Oxygen-reduced surface-terminated MXenes as cathodes for enhanced reversible Li–CO2 batteries
Li–CO2 batteries have garnered global attention due to their dual attributes of high energy density and effective CO2 capture. However, they still face a formidable challenge in decomposing the discharge products Li2CO3, resulting in subpar battery performance. MXene has been proposed as a promising candidate owing to its high electrical conductivity and effective CO2 activation performance. Nevertheless, unavoidable surface terminations (such as –O and –OH) during synthesis strongly influence their catalytic properties, posing a significant hurdle for high-performance Li–CO2 batteries. Herein, a thermal annealing approach is proposed to control the surface termination groups of MXene to reduce the generation of lithium hydroxide byproducts, thereby accelerating Li2CO3 decomposition kinetics and enhancing the reversibility of the battery. The systematic annealing of MXene in the range of 500–800 °C confirmed optimal surface terminations at 500 °C (TC500). The TC500, when tested as a catalyst in a Li–CO2 battery, exhibited enhanced performance metrics, such as low voltage gap (1.98 V), high specific capacity (15,740.38 mA h g−1 at 100 mA g−1), and prolonged cycle stability (700 h at 200 mA g−1). The proposed work offers an effective strategy for regulating MXene surface termination groups via simple annealing treatments to achieve high-performance Li–CO2 batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信