Fan Wang , Xiaochen Yuan , Yue Liu , Chan-Tong Lam
{"title":"LungNeXt:利用增强型 Mel 光谱图进行肺音分类的新型轻量级网络","authors":"Fan Wang , Xiaochen Yuan , Yue Liu , Chan-Tong Lam","doi":"10.1016/j.jksuci.2024.102200","DOIUrl":null,"url":null,"abstract":"<div><div>Lung auscultation is essential for early lung condition detection. Categorizing adventitious lung sounds requires expert discrimination by medical specialists. This paper details the features of LungNeXt, a novel classification model specifically designed for lung sound analysis. Furthermore, we propose two auxiliary methods: RandClipMix (RCM) for data augmentation and Enhanced Mel-Spectrogram for Feature Extraction (EMFE). RCM addresses the issue of data imbalance by randomly mixing clips within the same category to create new adventitious lung sounds. EMFE augments specific frequency bands in spectrograms to highlight adventitious features. These contributions enable LungNeXt to achieve outstanding performance. LungNeXt optimally integrates an appropriate number of NeXtblocks, ensuring superior performance and a lightweight model architecture. The proposed RCM and EMFE methods, along with the LungNeXt classification network, have been evaluated on the SPRSound dataset. Experimental results revealed a commendable score of 0.5699 for the lung sound five-category task on SPRSound. Specifically, the LungNeXt model is characterized by its efficiency, with only 3.804M parameters and a computational complexity of 0.659G FLOPS. This lightweight and efficient model is particularly well-suited for applications in electronic stethoscope back-end processing equipment, providing efficient diagnostic advice to physicians and patients.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102200"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LungNeXt: A novel lightweight network utilizing enhanced mel-spectrogram for lung sound classification\",\"authors\":\"Fan Wang , Xiaochen Yuan , Yue Liu , Chan-Tong Lam\",\"doi\":\"10.1016/j.jksuci.2024.102200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lung auscultation is essential for early lung condition detection. Categorizing adventitious lung sounds requires expert discrimination by medical specialists. This paper details the features of LungNeXt, a novel classification model specifically designed for lung sound analysis. Furthermore, we propose two auxiliary methods: RandClipMix (RCM) for data augmentation and Enhanced Mel-Spectrogram for Feature Extraction (EMFE). RCM addresses the issue of data imbalance by randomly mixing clips within the same category to create new adventitious lung sounds. EMFE augments specific frequency bands in spectrograms to highlight adventitious features. These contributions enable LungNeXt to achieve outstanding performance. LungNeXt optimally integrates an appropriate number of NeXtblocks, ensuring superior performance and a lightweight model architecture. The proposed RCM and EMFE methods, along with the LungNeXt classification network, have been evaluated on the SPRSound dataset. Experimental results revealed a commendable score of 0.5699 for the lung sound five-category task on SPRSound. Specifically, the LungNeXt model is characterized by its efficiency, with only 3.804M parameters and a computational complexity of 0.659G FLOPS. This lightweight and efficient model is particularly well-suited for applications in electronic stethoscope back-end processing equipment, providing efficient diagnostic advice to physicians and patients.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 8\",\"pages\":\"Article 102200\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002891\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002891","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LungNeXt: A novel lightweight network utilizing enhanced mel-spectrogram for lung sound classification
Lung auscultation is essential for early lung condition detection. Categorizing adventitious lung sounds requires expert discrimination by medical specialists. This paper details the features of LungNeXt, a novel classification model specifically designed for lung sound analysis. Furthermore, we propose two auxiliary methods: RandClipMix (RCM) for data augmentation and Enhanced Mel-Spectrogram for Feature Extraction (EMFE). RCM addresses the issue of data imbalance by randomly mixing clips within the same category to create new adventitious lung sounds. EMFE augments specific frequency bands in spectrograms to highlight adventitious features. These contributions enable LungNeXt to achieve outstanding performance. LungNeXt optimally integrates an appropriate number of NeXtblocks, ensuring superior performance and a lightweight model architecture. The proposed RCM and EMFE methods, along with the LungNeXt classification network, have been evaluated on the SPRSound dataset. Experimental results revealed a commendable score of 0.5699 for the lung sound five-category task on SPRSound. Specifically, the LungNeXt model is characterized by its efficiency, with only 3.804M parameters and a computational complexity of 0.659G FLOPS. This lightweight and efficient model is particularly well-suited for applications in electronic stethoscope back-end processing equipment, providing efficient diagnostic advice to physicians and patients.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.