Aya Barakat , Jean-Noël Jaubert , Philippe Arpentinier , Pascal Tobaly , Silvia Lasala
{"title":"了解斯特林热泵中化学反应工作流体的热力学效应","authors":"Aya Barakat , Jean-Noël Jaubert , Philippe Arpentinier , Pascal Tobaly , Silvia Lasala","doi":"10.1016/j.ijrefrig.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><div>Within the realm of sustainable heating technologies, this study examines the performance of a Stirling heat pump employing chemically reactive working fluids in contrast to conventional inert counterparts. Reactive working fluids are energy vectors that enable the conversion of not only thermal but also chemical energy within the heat pump. The investigation spans a wide range of theoretical reactive gaseous mixtures, leveraging the ideal gas mixture thermodynamic model. Each fluid is characterized by an equilibrated chemical reaction, denoted as <span><math><mrow><msub><mi>A</mi><mrow><mn>2</mn><mo>(</mo><mi>g</mi><mo>)</mo></mrow></msub><mo>⇄</mo><mn>2</mn><msub><mi>A</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></msub></mrow></math></span>, and distinguished by a set of reaction coordinates: the standard entropy change of reaction and standard enthalpy change of reaction. The chemical reaction evolution and thermodynamic properties are observed in each transformation, and the overall coefficient of performance (COP) of the system is evaluated and benchmarked against that of comparable inert working fluids. It is observed that the exothermic reaction during isothermal compression significantly increases the thermal energy supplied to the heat sink, as well as the thermal energy density per unit maximum volume, by up to 269 %, compared to an inert gas system. However, for the majority of reactive fluids studied, chemical reactions introduce irreversibility in the internal regenerator due to heat transfer across a finite temperature difference, contrary to the case of inert working fluids, penalizing the COP. Consequently, a reduction of up to 28 % in the COP is observed. Nevertheless, there exists a range of reactive fluids, characterized by reversible heat exchange in the internal regenerator, offering increased thermal energy transfer to the heat sink without compromising the COP.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 276-287"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the thermodynamic effects of chemically reactive working fluids in the Stirling heat pump\",\"authors\":\"Aya Barakat , Jean-Noël Jaubert , Philippe Arpentinier , Pascal Tobaly , Silvia Lasala\",\"doi\":\"10.1016/j.ijrefrig.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within the realm of sustainable heating technologies, this study examines the performance of a Stirling heat pump employing chemically reactive working fluids in contrast to conventional inert counterparts. Reactive working fluids are energy vectors that enable the conversion of not only thermal but also chemical energy within the heat pump. The investigation spans a wide range of theoretical reactive gaseous mixtures, leveraging the ideal gas mixture thermodynamic model. Each fluid is characterized by an equilibrated chemical reaction, denoted as <span><math><mrow><msub><mi>A</mi><mrow><mn>2</mn><mo>(</mo><mi>g</mi><mo>)</mo></mrow></msub><mo>⇄</mo><mn>2</mn><msub><mi>A</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></msub></mrow></math></span>, and distinguished by a set of reaction coordinates: the standard entropy change of reaction and standard enthalpy change of reaction. The chemical reaction evolution and thermodynamic properties are observed in each transformation, and the overall coefficient of performance (COP) of the system is evaluated and benchmarked against that of comparable inert working fluids. It is observed that the exothermic reaction during isothermal compression significantly increases the thermal energy supplied to the heat sink, as well as the thermal energy density per unit maximum volume, by up to 269 %, compared to an inert gas system. However, for the majority of reactive fluids studied, chemical reactions introduce irreversibility in the internal regenerator due to heat transfer across a finite temperature difference, contrary to the case of inert working fluids, penalizing the COP. Consequently, a reduction of up to 28 % in the COP is observed. Nevertheless, there exists a range of reactive fluids, characterized by reversible heat exchange in the internal regenerator, offering increased thermal energy transfer to the heat sink without compromising the COP.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 276-287\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002949\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002949","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Understanding the thermodynamic effects of chemically reactive working fluids in the Stirling heat pump
Within the realm of sustainable heating technologies, this study examines the performance of a Stirling heat pump employing chemically reactive working fluids in contrast to conventional inert counterparts. Reactive working fluids are energy vectors that enable the conversion of not only thermal but also chemical energy within the heat pump. The investigation spans a wide range of theoretical reactive gaseous mixtures, leveraging the ideal gas mixture thermodynamic model. Each fluid is characterized by an equilibrated chemical reaction, denoted as , and distinguished by a set of reaction coordinates: the standard entropy change of reaction and standard enthalpy change of reaction. The chemical reaction evolution and thermodynamic properties are observed in each transformation, and the overall coefficient of performance (COP) of the system is evaluated and benchmarked against that of comparable inert working fluids. It is observed that the exothermic reaction during isothermal compression significantly increases the thermal energy supplied to the heat sink, as well as the thermal energy density per unit maximum volume, by up to 269 %, compared to an inert gas system. However, for the majority of reactive fluids studied, chemical reactions introduce irreversibility in the internal regenerator due to heat transfer across a finite temperature difference, contrary to the case of inert working fluids, penalizing the COP. Consequently, a reduction of up to 28 % in the COP is observed. Nevertheless, there exists a range of reactive fluids, characterized by reversible heat exchange in the internal regenerator, offering increased thermal energy transfer to the heat sink without compromising the COP.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.