Christian Harito , Syauqi Abdurrahman Abrori , Munawar Khalil , Brian Yuliarto , Sule Erten-Ela
{"title":"包晶体太阳能电池稳定性的最新进展及文献计量学研究","authors":"Christian Harito , Syauqi Abdurrahman Abrori , Munawar Khalil , Brian Yuliarto , Sule Erten-Ela","doi":"10.1016/j.cocis.2024.101862","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31<sup>st</sup>, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"74 ","pages":"Article 101862"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current progress of perovskite solar cells stability with bibliometric study\",\"authors\":\"Christian Harito , Syauqi Abdurrahman Abrori , Munawar Khalil , Brian Yuliarto , Sule Erten-Ela\",\"doi\":\"10.1016/j.cocis.2024.101862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31<sup>st</sup>, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.</div></div>\",\"PeriodicalId\":293,\"journal\":{\"name\":\"Current Opinion in Colloid & Interface Science\",\"volume\":\"74 \",\"pages\":\"Article 101862\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Colloid & Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359029424000803\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029424000803","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Current progress of perovskite solar cells stability with bibliometric study
Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31st, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.