Vineet Goswami , Judith L. Hannah , Holly J. Stein , Per Ahlberg , Jörg Maletz , Frans Lundberg , Jan Ove R. Ebbestad
{"title":"瑞典晚寒武世至中奥陶世Alum和Tøyen页岩的Re-Os地质年代和地球化学演化","authors":"Vineet Goswami , Judith L. Hannah , Holly J. Stein , Per Ahlberg , Jörg Maletz , Frans Lundberg , Jan Ove R. Ebbestad","doi":"10.1016/j.gloplacha.2024.104580","DOIUrl":null,"url":null,"abstract":"<div><div>The limited number of accurate and precise radiometric ages through the ∼100 Myr span of the Cambrian and Ordovician impedes reliable age determinations for stage boundaries in these periods. Here, we fill significant gaps in the early Paleozoic chronostratigraphy by providing precise Re-Os time-pins. Sample selection is linked to a firm biostratigraphic framework built on the appearance and distribution of trilobites, graptolites, and conodonts. A Furongian (upper Cambrian) Alum Shale section (Andrarum-3 drill core, Scania, Sweden) at the onset of the Steptoean Positive Carbon Isotopic Excursion (SPICE) yields highly non-isochronous Re-Os isotopic data from a section with wildly fluctuating δ<sup>13</sup>C<sub>org</sub>; however, selected data from a narrow sediment band with steady carbon isotope stratigraphy provides an imprecise Re-Os age of 497 ± 28 Ma (2σ; Model 3; <em>n</em> = 3), with an initial <sup>187</sup>Os/<sup>188</sup>Os ratio (Os<sub>i</sub>) of 0.74 ± 0.05. Organic-rich Alum Shale (Tomten-1 drill core, Västergötland, Sweden) from ∼120 cm below the Cambrian-Ordovician boundary yields a Model 1 age of 488.6 ± 5.1 Ma (2σ; MSWD = 1.5; <em>n</em> = 25) and an Os<sub>i</sub> of 0.82 ± 0.04 for Stage 10, uppermost Cambrian. Biostratigraphic data indicate the dated Alum Shale is from an interval slightly below the Top Of Cambrian Excursion (TOCE) and slightly above the First Appearance Datum (FAD) of the agnostoid <em>Lotagnostus americanus</em>. Organic-rich Tøyen Shale (Lerhamn drill core, Scania, Sweden) yields a precise Model 1 Re-Os age of 469.7 ± 1.4 Ma (2σ; MSWD = 1.0; <em>n</em> = 10) and Os<sub>i</sub> of 0.802 ± 0.002 for the maximum age of the Floian–Dapingian stage boundary (Lower–Middle Ordovician boundary). The Os isotopic composition of seawater from the latest Ediacaran through the Cambrian to Early-Middle Ordovician hovers around 0.8 but falls to 0.54 by early Silurian. This significant decrease in seawater <sup>187</sup>Os/<sup>188</sup>Os is consistent with reduced chemical weathering and cooler seawater temperatures through the Middle–Late Ordovician. Overall, Redox Sensitive Element (RSE; Re, Os, Mo, U) abundances correlate positively with Total Organic Carbon (TOC), suggesting efficient removal of these elements from an anoxic water column by organic matter. However, these relationships break down for high TOC (>10%) shales depositing under euxinic conditions. The RSE-TOC relationship breakdown supports enhanced metal drawdown from the water column with local pyrite accumulation. Geochemical data suggest the deposition of Alum and Tøyen shales under hydrographically restricted settings with increased primary productivity along the Baltica's margin during the latest Cambrian to Early-Middle Ordovician.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"242 ","pages":"Article 104580"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-Os geochronology and geochemical evolution of late Cambrian to Middle Ordovician Alum and Tøyen shales, Sweden\",\"authors\":\"Vineet Goswami , Judith L. Hannah , Holly J. Stein , Per Ahlberg , Jörg Maletz , Frans Lundberg , Jan Ove R. Ebbestad\",\"doi\":\"10.1016/j.gloplacha.2024.104580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The limited number of accurate and precise radiometric ages through the ∼100 Myr span of the Cambrian and Ordovician impedes reliable age determinations for stage boundaries in these periods. Here, we fill significant gaps in the early Paleozoic chronostratigraphy by providing precise Re-Os time-pins. Sample selection is linked to a firm biostratigraphic framework built on the appearance and distribution of trilobites, graptolites, and conodonts. A Furongian (upper Cambrian) Alum Shale section (Andrarum-3 drill core, Scania, Sweden) at the onset of the Steptoean Positive Carbon Isotopic Excursion (SPICE) yields highly non-isochronous Re-Os isotopic data from a section with wildly fluctuating δ<sup>13</sup>C<sub>org</sub>; however, selected data from a narrow sediment band with steady carbon isotope stratigraphy provides an imprecise Re-Os age of 497 ± 28 Ma (2σ; Model 3; <em>n</em> = 3), with an initial <sup>187</sup>Os/<sup>188</sup>Os ratio (Os<sub>i</sub>) of 0.74 ± 0.05. Organic-rich Alum Shale (Tomten-1 drill core, Västergötland, Sweden) from ∼120 cm below the Cambrian-Ordovician boundary yields a Model 1 age of 488.6 ± 5.1 Ma (2σ; MSWD = 1.5; <em>n</em> = 25) and an Os<sub>i</sub> of 0.82 ± 0.04 for Stage 10, uppermost Cambrian. Biostratigraphic data indicate the dated Alum Shale is from an interval slightly below the Top Of Cambrian Excursion (TOCE) and slightly above the First Appearance Datum (FAD) of the agnostoid <em>Lotagnostus americanus</em>. Organic-rich Tøyen Shale (Lerhamn drill core, Scania, Sweden) yields a precise Model 1 Re-Os age of 469.7 ± 1.4 Ma (2σ; MSWD = 1.0; <em>n</em> = 10) and Os<sub>i</sub> of 0.802 ± 0.002 for the maximum age of the Floian–Dapingian stage boundary (Lower–Middle Ordovician boundary). The Os isotopic composition of seawater from the latest Ediacaran through the Cambrian to Early-Middle Ordovician hovers around 0.8 but falls to 0.54 by early Silurian. This significant decrease in seawater <sup>187</sup>Os/<sup>188</sup>Os is consistent with reduced chemical weathering and cooler seawater temperatures through the Middle–Late Ordovician. Overall, Redox Sensitive Element (RSE; Re, Os, Mo, U) abundances correlate positively with Total Organic Carbon (TOC), suggesting efficient removal of these elements from an anoxic water column by organic matter. However, these relationships break down for high TOC (>10%) shales depositing under euxinic conditions. The RSE-TOC relationship breakdown supports enhanced metal drawdown from the water column with local pyrite accumulation. Geochemical data suggest the deposition of Alum and Tøyen shales under hydrographically restricted settings with increased primary productivity along the Baltica's margin during the latest Cambrian to Early-Middle Ordovician.</div></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":\"242 \",\"pages\":\"Article 104580\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124002273\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124002273","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Re-Os geochronology and geochemical evolution of late Cambrian to Middle Ordovician Alum and Tøyen shales, Sweden
The limited number of accurate and precise radiometric ages through the ∼100 Myr span of the Cambrian and Ordovician impedes reliable age determinations for stage boundaries in these periods. Here, we fill significant gaps in the early Paleozoic chronostratigraphy by providing precise Re-Os time-pins. Sample selection is linked to a firm biostratigraphic framework built on the appearance and distribution of trilobites, graptolites, and conodonts. A Furongian (upper Cambrian) Alum Shale section (Andrarum-3 drill core, Scania, Sweden) at the onset of the Steptoean Positive Carbon Isotopic Excursion (SPICE) yields highly non-isochronous Re-Os isotopic data from a section with wildly fluctuating δ13Corg; however, selected data from a narrow sediment band with steady carbon isotope stratigraphy provides an imprecise Re-Os age of 497 ± 28 Ma (2σ; Model 3; n = 3), with an initial 187Os/188Os ratio (Osi) of 0.74 ± 0.05. Organic-rich Alum Shale (Tomten-1 drill core, Västergötland, Sweden) from ∼120 cm below the Cambrian-Ordovician boundary yields a Model 1 age of 488.6 ± 5.1 Ma (2σ; MSWD = 1.5; n = 25) and an Osi of 0.82 ± 0.04 for Stage 10, uppermost Cambrian. Biostratigraphic data indicate the dated Alum Shale is from an interval slightly below the Top Of Cambrian Excursion (TOCE) and slightly above the First Appearance Datum (FAD) of the agnostoid Lotagnostus americanus. Organic-rich Tøyen Shale (Lerhamn drill core, Scania, Sweden) yields a precise Model 1 Re-Os age of 469.7 ± 1.4 Ma (2σ; MSWD = 1.0; n = 10) and Osi of 0.802 ± 0.002 for the maximum age of the Floian–Dapingian stage boundary (Lower–Middle Ordovician boundary). The Os isotopic composition of seawater from the latest Ediacaran through the Cambrian to Early-Middle Ordovician hovers around 0.8 but falls to 0.54 by early Silurian. This significant decrease in seawater 187Os/188Os is consistent with reduced chemical weathering and cooler seawater temperatures through the Middle–Late Ordovician. Overall, Redox Sensitive Element (RSE; Re, Os, Mo, U) abundances correlate positively with Total Organic Carbon (TOC), suggesting efficient removal of these elements from an anoxic water column by organic matter. However, these relationships break down for high TOC (>10%) shales depositing under euxinic conditions. The RSE-TOC relationship breakdown supports enhanced metal drawdown from the water column with local pyrite accumulation. Geochemical data suggest the deposition of Alum and Tøyen shales under hydrographically restricted settings with increased primary productivity along the Baltica's margin during the latest Cambrian to Early-Middle Ordovician.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.