布尔读-k 和多线性电路注释

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Stasys Jukna
{"title":"布尔读-k 和多线性电路注释","authors":"Stasys Jukna","doi":"10.1016/j.dam.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>A monotone Boolean <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuit computing a monotone Boolean function <span><math><mi>f</mi></math></span> is a read-<span><math><mi>k</mi></math></span> circuit if the polynomial produced (purely syntactically) by the arithmetic <span><math><mrow><mo>(</mo><mo>+</mo><mo>,</mo><mo>×</mo><mo>)</mo></mrow></math></span> version of the circuit has the property that for every prime implicant of <span><math><mi>f</mi></math></span>, the polynomial contains at least one monomial with the same set of variables, each appearing with degree <span><math><mrow><mo>⩽</mo><mi>k</mi></mrow></math></span>. Every monotone circuit is a read-<span><math><mi>k</mi></math></span> circuit for some <span><math><mi>k</mi></math></span>. We show that already read-1 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits are not weaker than monotone arithmetic constant-free <span><math><mrow><mo>(</mo><mo>+</mo><mo>,</mo><mo>×</mo><mo>)</mo></mrow></math></span> circuits computing multilinear polynomials, are not weaker than non-monotone multilinear <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mo>¬</mo><mo>)</mo></mrow></math></span> circuits computing monotone Boolean functions, and have the same power as tropical <span><math><mrow><mo>(</mo><mo>min</mo><mo>,</mo><mo>+</mo><mo>)</mo></mrow></math></span> circuits solving <span><math><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></math></span> minimization problems. Finally, we show that read-2 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits can be exponentially smaller than read-1 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on Boolean read-k and multilinear circuits\",\"authors\":\"Stasys Jukna\",\"doi\":\"10.1016/j.dam.2024.09.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A monotone Boolean <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuit computing a monotone Boolean function <span><math><mi>f</mi></math></span> is a read-<span><math><mi>k</mi></math></span> circuit if the polynomial produced (purely syntactically) by the arithmetic <span><math><mrow><mo>(</mo><mo>+</mo><mo>,</mo><mo>×</mo><mo>)</mo></mrow></math></span> version of the circuit has the property that for every prime implicant of <span><math><mi>f</mi></math></span>, the polynomial contains at least one monomial with the same set of variables, each appearing with degree <span><math><mrow><mo>⩽</mo><mi>k</mi></mrow></math></span>. Every monotone circuit is a read-<span><math><mi>k</mi></math></span> circuit for some <span><math><mi>k</mi></math></span>. We show that already read-1 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits are not weaker than monotone arithmetic constant-free <span><math><mrow><mo>(</mo><mo>+</mo><mo>,</mo><mo>×</mo><mo>)</mo></mrow></math></span> circuits computing multilinear polynomials, are not weaker than non-monotone multilinear <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mo>¬</mo><mo>)</mo></mrow></math></span> circuits computing monotone Boolean functions, and have the same power as tropical <span><math><mrow><mo>(</mo><mo>min</mo><mo>,</mo><mo>+</mo><mo>)</mo></mrow></math></span> circuits solving <span><math><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></math></span> minimization problems. Finally, we show that read-2 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits can be exponentially smaller than read-1 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2400413X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400413X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果一个计算单调布尔函数 f 的单调布尔 (∨,∧) 电路的算术 (+,×) 版本所产生的多项式(纯语法)具有这样的性质,即对于 f 的每一个素隐含式,该多项式包含至少一个具有相同变量集的单项式,每个单项式的阶数为⩽k,那么这个单调布尔 (∨,∧) 电路就是一个读-k 电路。我们证明已读-1 (∨,∧) 电路不弱于计算多线性多项式的单调无算术常数 (+,×) 电路,不弱于计算单调布尔函数的非单调多线性 (∨,∧,¬) 电路,并且与解决 0/1 最小化问题的热带 (min,+) 电路具有相同的能力。最后,我们证明读-2 (∨,∧) 电路比读-1 (∨,∧) 电路小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on Boolean read-k and multilinear circuits
A monotone Boolean (,) circuit computing a monotone Boolean function f is a read-k circuit if the polynomial produced (purely syntactically) by the arithmetic (+,×) version of the circuit has the property that for every prime implicant of f, the polynomial contains at least one monomial with the same set of variables, each appearing with degree k. Every monotone circuit is a read-k circuit for some k. We show that already read-1 (,) circuits are not weaker than monotone arithmetic constant-free (+,×) circuits computing multilinear polynomials, are not weaker than non-monotone multilinear (,,¬) circuits computing monotone Boolean functions, and have the same power as tropical (min,+) circuits solving 0/1 minimization problems. Finally, we show that read-2 (,) circuits can be exponentially smaller than read-1 (,) circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信