Shuqiang Liu , Jie Zhang , Jingyu Xue , Mingliang Chen , Leyang Dai , Zibin Yin , Yaoqi Kang
{"title":"内燃机的光学测试设备和方法,以及对三种不同替代燃料的喷雾燃烧特性的光学研究:综述","authors":"Shuqiang Liu , Jie Zhang , Jingyu Xue , Mingliang Chen , Leyang Dai , Zibin Yin , Yaoqi Kang","doi":"10.1016/j.joei.2024.101845","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the increasingly stringent emission regulations and the rising call for energy saving and emission reduction, efficient and clean combustion in internal combustion engines have become a research priority. However, the in-cylinder spray combustion process is complex and variable due to a variety of factors. Spray combustion, as a key segment of combustion in internal combustion engines, plays a key role in the efficient and clean combustion of internal combustion engines. The optical test device can truly observe the spray combustion in the cylinder of an internal combustion engine by equipping with an optical window. This paper focuses on the study of internal combustion engine optics, and reviews the current major optical test devices, optical detection methods, and spray combustion characteristics of three different alternative fuels. Firstly, the paper reviews three commonly used optical test devices, namely, CVCB, RCM and optical engine, and their studies on laminar flame, ignition delay and flash spray. Subsequently, the paper summarizes the spray combustion characteristic parameters and nine commonly used optical test methods that are well suited to determine spray morphology, concentration field, velocity field, combustion characteristics and intermediate composition. Finally, the paper summarizes the spray combustion characteristics of three alternative fuels.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101845"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical test devices and methods for internal combustion engines and optical studies on spray combustion characteristics for three different alternative fuels: A review\",\"authors\":\"Shuqiang Liu , Jie Zhang , Jingyu Xue , Mingliang Chen , Leyang Dai , Zibin Yin , Yaoqi Kang\",\"doi\":\"10.1016/j.joei.2024.101845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the increasingly stringent emission regulations and the rising call for energy saving and emission reduction, efficient and clean combustion in internal combustion engines have become a research priority. However, the in-cylinder spray combustion process is complex and variable due to a variety of factors. Spray combustion, as a key segment of combustion in internal combustion engines, plays a key role in the efficient and clean combustion of internal combustion engines. The optical test device can truly observe the spray combustion in the cylinder of an internal combustion engine by equipping with an optical window. This paper focuses on the study of internal combustion engine optics, and reviews the current major optical test devices, optical detection methods, and spray combustion characteristics of three different alternative fuels. Firstly, the paper reviews three commonly used optical test devices, namely, CVCB, RCM and optical engine, and their studies on laminar flame, ignition delay and flash spray. Subsequently, the paper summarizes the spray combustion characteristic parameters and nine commonly used optical test methods that are well suited to determine spray morphology, concentration field, velocity field, combustion characteristics and intermediate composition. Finally, the paper summarizes the spray combustion characteristics of three alternative fuels.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101845\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003234\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003234","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optical test devices and methods for internal combustion engines and optical studies on spray combustion characteristics for three different alternative fuels: A review
Due to the increasingly stringent emission regulations and the rising call for energy saving and emission reduction, efficient and clean combustion in internal combustion engines have become a research priority. However, the in-cylinder spray combustion process is complex and variable due to a variety of factors. Spray combustion, as a key segment of combustion in internal combustion engines, plays a key role in the efficient and clean combustion of internal combustion engines. The optical test device can truly observe the spray combustion in the cylinder of an internal combustion engine by equipping with an optical window. This paper focuses on the study of internal combustion engine optics, and reviews the current major optical test devices, optical detection methods, and spray combustion characteristics of three different alternative fuels. Firstly, the paper reviews three commonly used optical test devices, namely, CVCB, RCM and optical engine, and their studies on laminar flame, ignition delay and flash spray. Subsequently, the paper summarizes the spray combustion characteristic parameters and nine commonly used optical test methods that are well suited to determine spray morphology, concentration field, velocity field, combustion characteristics and intermediate composition. Finally, the paper summarizes the spray combustion characteristics of three alternative fuels.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.