{"title":"一步法合成压电混合 BNNT/BaTiO3 复合材料及其在骨组织工程中的应用","authors":"Zehra Çobandede , Mustafa Çulha","doi":"10.1016/j.jmbbm.2024.106758","DOIUrl":null,"url":null,"abstract":"<div><div>Nanomaterials with piezoelectric properties can significantly improve the applicability of polymers used in tissue engineering applications. In this study, we report the one-step synthesis of a novel hybrid piezoelectric composite comprising barium titanates and boron nitride nanotubes. This composite is distinguished by its unique microstructures, including nanoflakes, triangular boron nitride structures, and fiber-like boron nitride nanotube configurations, which contribute to its enhanced piezoelectric properties. The composite was incorporated into a chitosan-based tissue scaffold and evaluated in vitro. Electric-responsive Human Osteoblast cells cultured on the scaffolds are exposed to low-frequency ultrasound stimulation during cell growth. The biocompatibility, cell adhesion, alkaline phosphatase activities, and mineralization of osteoblast cells on the piezo-composite scaffolds were evaluated. The results show that the hybrid piezoelectric composite significantly enhances the properties of chitosan-based scaffold.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106758"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering\",\"authors\":\"Zehra Çobandede , Mustafa Çulha\",\"doi\":\"10.1016/j.jmbbm.2024.106758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanomaterials with piezoelectric properties can significantly improve the applicability of polymers used in tissue engineering applications. In this study, we report the one-step synthesis of a novel hybrid piezoelectric composite comprising barium titanates and boron nitride nanotubes. This composite is distinguished by its unique microstructures, including nanoflakes, triangular boron nitride structures, and fiber-like boron nitride nanotube configurations, which contribute to its enhanced piezoelectric properties. The composite was incorporated into a chitosan-based tissue scaffold and evaluated in vitro. Electric-responsive Human Osteoblast cells cultured on the scaffolds are exposed to low-frequency ultrasound stimulation during cell growth. The biocompatibility, cell adhesion, alkaline phosphatase activities, and mineralization of osteoblast cells on the piezo-composite scaffolds were evaluated. The results show that the hybrid piezoelectric composite significantly enhances the properties of chitosan-based scaffold.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106758\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124003904\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124003904","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering
Nanomaterials with piezoelectric properties can significantly improve the applicability of polymers used in tissue engineering applications. In this study, we report the one-step synthesis of a novel hybrid piezoelectric composite comprising barium titanates and boron nitride nanotubes. This composite is distinguished by its unique microstructures, including nanoflakes, triangular boron nitride structures, and fiber-like boron nitride nanotube configurations, which contribute to its enhanced piezoelectric properties. The composite was incorporated into a chitosan-based tissue scaffold and evaluated in vitro. Electric-responsive Human Osteoblast cells cultured on the scaffolds are exposed to low-frequency ultrasound stimulation during cell growth. The biocompatibility, cell adhesion, alkaline phosphatase activities, and mineralization of osteoblast cells on the piezo-composite scaffolds were evaluated. The results show that the hybrid piezoelectric composite significantly enhances the properties of chitosan-based scaffold.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.