{"title":"用于医疗保健的物理刺激响应式聚合物贴片","authors":"Yifan Cheng , Yuan Lu","doi":"10.1016/j.bioactmat.2024.08.025","DOIUrl":null,"url":null,"abstract":"<div><div>Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"43 ","pages":"Pages 342-375"},"PeriodicalIF":18.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical stimuli-responsive polymeric patches for healthcare\",\"authors\":\"Yifan Cheng , Yuan Lu\",\"doi\":\"10.1016/j.bioactmat.2024.08.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"43 \",\"pages\":\"Pages 342-375\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24003633\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24003633","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Physical stimuli-responsive polymeric patches for healthcare
Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.