{"title":"作为阻燃添加剂的二维纳米结构:杂化聚合物涂层的最新进展","authors":"Supraja Sankeshi , Jayasree Ganapathiraju , Pooja Bajaj , Madhu Krishna Mangali , Syed Hussain Shaik , Pratyay Basak","doi":"10.1016/j.nanoso.2024.101346","DOIUrl":null,"url":null,"abstract":"<div><div>The use of polymers in day-to-day life is undeniable; nevertheless, applicability of these polymers in the fire risk sector poses serious limitations as most of the polymeric materials/coatings employed are prone to fire. Hence to improve the fire retardant (FR) properties of polymers, researchers recommend the use of FR materials/additives, either physically blended or incorporated chemically <em>via</em> suitable modifications. However, to achieve sufficient FR property, usually higher amounts of traditional FRs are required which understandably deteriorates the mechanical and other important properties of the polymers. Moreover, use of halogenated FRs are under immense scrutiny due to the possible release of carcinogenic and organic pollutants. As a result development of halogen-free FRs is an emerging field of research. In this context, incorporation of nanostructured two-dimensional (2-D) materials to form polymer composites that can not only reinforce the mechanical, thermal and other important properties but also improve flame retardancy has opened up new prospects. The 2-D nanostructured materials, particularly, layered double hydroxide (LDH), MXenes, Graphene and its derivatives, Boron Nitride (BN) and molybdenum disulphide (MoS<sub>2</sub>) have demonstrated capabilities to enhance the FR properties as a green and environmentally benign material. Incorporation of these 2-D materials into polymers to form nanohybrids can be achieved either as conventional filler or as surface modified systems chemically bonded to the parent matrix. In the present review, the recent development strategies of surface modifications employed on 2-D nanostructured materials (LDH, MXenes, GO, BN and/or MoS<sub>2</sub>) to form polymeric nanocomposites and the FR properties achieved are discussed. The significant outcomes reported by various research groups, the key insights gained and viewpoints are deliberated. A plausible underlying mechanism for flame retardancy offered by 2-D nanostructured materials (LDH, MXenes, GO, BN and/or MoS<sub>2</sub>) based polymer nanocomposites as extended by several research groups is discussed.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101346"},"PeriodicalIF":5.4500,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D-nanostructures as flame retardant additives: Recent progress in hybrid polymeric coatings\",\"authors\":\"Supraja Sankeshi , Jayasree Ganapathiraju , Pooja Bajaj , Madhu Krishna Mangali , Syed Hussain Shaik , Pratyay Basak\",\"doi\":\"10.1016/j.nanoso.2024.101346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of polymers in day-to-day life is undeniable; nevertheless, applicability of these polymers in the fire risk sector poses serious limitations as most of the polymeric materials/coatings employed are prone to fire. Hence to improve the fire retardant (FR) properties of polymers, researchers recommend the use of FR materials/additives, either physically blended or incorporated chemically <em>via</em> suitable modifications. However, to achieve sufficient FR property, usually higher amounts of traditional FRs are required which understandably deteriorates the mechanical and other important properties of the polymers. Moreover, use of halogenated FRs are under immense scrutiny due to the possible release of carcinogenic and organic pollutants. As a result development of halogen-free FRs is an emerging field of research. In this context, incorporation of nanostructured two-dimensional (2-D) materials to form polymer composites that can not only reinforce the mechanical, thermal and other important properties but also improve flame retardancy has opened up new prospects. The 2-D nanostructured materials, particularly, layered double hydroxide (LDH), MXenes, Graphene and its derivatives, Boron Nitride (BN) and molybdenum disulphide (MoS<sub>2</sub>) have demonstrated capabilities to enhance the FR properties as a green and environmentally benign material. Incorporation of these 2-D materials into polymers to form nanohybrids can be achieved either as conventional filler or as surface modified systems chemically bonded to the parent matrix. In the present review, the recent development strategies of surface modifications employed on 2-D nanostructured materials (LDH, MXenes, GO, BN and/or MoS<sub>2</sub>) to form polymeric nanocomposites and the FR properties achieved are discussed. The significant outcomes reported by various research groups, the key insights gained and viewpoints are deliberated. A plausible underlying mechanism for flame retardancy offered by 2-D nanostructured materials (LDH, MXenes, GO, BN and/or MoS<sub>2</sub>) based polymer nanocomposites as extended by several research groups is discussed.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101346\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24002580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
2D-nanostructures as flame retardant additives: Recent progress in hybrid polymeric coatings
The use of polymers in day-to-day life is undeniable; nevertheless, applicability of these polymers in the fire risk sector poses serious limitations as most of the polymeric materials/coatings employed are prone to fire. Hence to improve the fire retardant (FR) properties of polymers, researchers recommend the use of FR materials/additives, either physically blended or incorporated chemically via suitable modifications. However, to achieve sufficient FR property, usually higher amounts of traditional FRs are required which understandably deteriorates the mechanical and other important properties of the polymers. Moreover, use of halogenated FRs are under immense scrutiny due to the possible release of carcinogenic and organic pollutants. As a result development of halogen-free FRs is an emerging field of research. In this context, incorporation of nanostructured two-dimensional (2-D) materials to form polymer composites that can not only reinforce the mechanical, thermal and other important properties but also improve flame retardancy has opened up new prospects. The 2-D nanostructured materials, particularly, layered double hydroxide (LDH), MXenes, Graphene and its derivatives, Boron Nitride (BN) and molybdenum disulphide (MoS2) have demonstrated capabilities to enhance the FR properties as a green and environmentally benign material. Incorporation of these 2-D materials into polymers to form nanohybrids can be achieved either as conventional filler or as surface modified systems chemically bonded to the parent matrix. In the present review, the recent development strategies of surface modifications employed on 2-D nanostructured materials (LDH, MXenes, GO, BN and/or MoS2) to form polymeric nanocomposites and the FR properties achieved are discussed. The significant outcomes reported by various research groups, the key insights gained and viewpoints are deliberated. A plausible underlying mechanism for flame retardancy offered by 2-D nanostructured materials (LDH, MXenes, GO, BN and/or MoS2) based polymer nanocomposites as extended by several research groups is discussed.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .