Faisal Mumtaz , Tasawar Abbas , Adil Jhangeer , Ijaz Ali
{"title":"具有焦耳热源和滑移效应的倾斜磁化流中纳米流体的热意义分析","authors":"Faisal Mumtaz , Tasawar Abbas , Adil Jhangeer , Ijaz Ali","doi":"10.1016/j.nanoso.2024.101349","DOIUrl":null,"url":null,"abstract":"<div><div>The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering.</div><div>The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions.</div><div>Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101349"},"PeriodicalIF":5.4500,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects\",\"authors\":\"Faisal Mumtaz , Tasawar Abbas , Adil Jhangeer , Ijaz Ali\",\"doi\":\"10.1016/j.nanoso.2024.101349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering.</div><div>The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions.</div><div>Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101349\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24002610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Analysis of thermal significances of nanofluids in inclined magnetized flow with Joule heating source and slip effects
The growing need for effective thermal management systems in engineering applications will improve performance by using nanofluids. Nanofluids, which show enhanced thermal characteristics compared to typical fluids, offer an effective way for heat transmission processes in industries. This study is particularly useful for systems where traditional fluids are insufficient for improving thermal performance. Understanding the overall impacts of Joule heating, magnetic fields, and slip conditions would be beneficial in fields such as aircraft, microelectronics, and biomedical engineering.
The thermal significances of nanofluids in an inclined magnetized flow are analyzed in this work, taking slip effects and the Joule heating source into account. The motivation behind the current research is to investigate the flow and heat transfer behavior of magnetohydrodynamic (MHD) nanofluid under the influence of Joule heating in the presence of slip conditions.
Based on conservation laws and suitable boundary conditions, the governing formulas for mass, momentum, energy, and nanoparticle concentration are developed. In this thermal investigation, unsteady nanofluid flow in two dimensions via a nonlinear stretched configuration is studied numerically together with an example of a non-uniform heat source. Using similarity transformation, the governing partial differential equation for chemical radiation and slip effects parameters for hydromagnetic flow is transformed into a set of ordinary differential equation (ODE). To solve these equations, a numerical method is applied. This study found that the velocity, mass transfer, temperature, concentration, heat transfer, and skin friction coefficient are significantly influenced by the chemical reaction, radiation parameter, and velocity slip. A graphical representation of the parameters influencing the heat transfer and the velocity changes in calculation is observed.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .