{"title":"Artepillin C 和 Aromadendrin 作为胶原酶和弹性蛋白酶抑制剂的体外和硅学治疗特性,以及抗卵巢癌效果和抗氧化潜力的研究","authors":"","doi":"10.1016/j.jics.2024.101367","DOIUrl":null,"url":null,"abstract":"<div><div>In this investigation, the enzymes collagenase and elastase were inhibited by artepillin.C and aromadendrin molecules with excellent to good IC50 values of 16.65, and 0.79 μM for artepillin.C and 7.31, 19.38, and 10.56 μM for aromadendrin. Using the molecular modeling study, the chemical activity of these compounds against the enzymes, collagenase, and elastase were evaluated. The anti-cancer properties of the compounds were evaluated using the following cell lines: NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289. The DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical scavenging assay was used to measure antioxidant activity, and the spectrophotometric method was used in this work. The chemical activities of artepillin.C and aromadendrin against collagenase and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compounds were evaluated against NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 cell lines. Also, some cell lines had best results for aromadendrin like NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 (10.54 ± 0.94, 22.11 ± 2.52, 31.85 ± 4.73, 8.14 ± 1.52, 17.94 ± 1.88, and 24.31 ± 2.64 μM). The chemical activities of artepillin.C and aromadendrin against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor–Like 1, M2 muscarinic receptor, and estrogen receptors) in the mentioned cell lines were assessed using the molecular docking calculations. The outcomes provided information on potential interactions and their atomic-level properties. According to the docking scores, the compounds show a high affinity for binding to proteins and enzymes. Furthermore, these substances made good contact with the receptors and enzymes. As a result, these substances may have the ability to suppress cancer cells and enzymes.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro and in silico therapeutic properties of Artepillin C and Aromadendrin as collagenase and elastase inhibitors and investigation of anti-Ovarian cancer effects and antioxidant potential\",\"authors\":\"\",\"doi\":\"10.1016/j.jics.2024.101367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this investigation, the enzymes collagenase and elastase were inhibited by artepillin.C and aromadendrin molecules with excellent to good IC50 values of 16.65, and 0.79 μM for artepillin.C and 7.31, 19.38, and 10.56 μM for aromadendrin. Using the molecular modeling study, the chemical activity of these compounds against the enzymes, collagenase, and elastase were evaluated. The anti-cancer properties of the compounds were evaluated using the following cell lines: NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289. The DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical scavenging assay was used to measure antioxidant activity, and the spectrophotometric method was used in this work. The chemical activities of artepillin.C and aromadendrin against collagenase and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compounds were evaluated against NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 cell lines. Also, some cell lines had best results for aromadendrin like NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 (10.54 ± 0.94, 22.11 ± 2.52, 31.85 ± 4.73, 8.14 ± 1.52, 17.94 ± 1.88, and 24.31 ± 2.64 μM). The chemical activities of artepillin.C and aromadendrin against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor–Like 1, M2 muscarinic receptor, and estrogen receptors) in the mentioned cell lines were assessed using the molecular docking calculations. The outcomes provided information on potential interactions and their atomic-level properties. According to the docking scores, the compounds show a high affinity for binding to proteins and enzymes. Furthermore, these substances made good contact with the receptors and enzymes. As a result, these substances may have the ability to suppress cancer cells and enzymes.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019452224002474\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002474","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In vitro and in silico therapeutic properties of Artepillin C and Aromadendrin as collagenase and elastase inhibitors and investigation of anti-Ovarian cancer effects and antioxidant potential
In this investigation, the enzymes collagenase and elastase were inhibited by artepillin.C and aromadendrin molecules with excellent to good IC50 values of 16.65, and 0.79 μM for artepillin.C and 7.31, 19.38, and 10.56 μM for aromadendrin. Using the molecular modeling study, the chemical activity of these compounds against the enzymes, collagenase, and elastase were evaluated. The anti-cancer properties of the compounds were evaluated using the following cell lines: NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289. The DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical scavenging assay was used to measure antioxidant activity, and the spectrophotometric method was used in this work. The chemical activities of artepillin.C and aromadendrin against collagenase and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compounds were evaluated against NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 cell lines. Also, some cell lines had best results for aromadendrin like NIH: OVCAR-3, ES-2, UACC-1598, Hs 832(C).T [Hs832.Tc], TOV-21G, UWB1.289 (10.54 ± 0.94, 22.11 ± 2.52, 31.85 ± 4.73, 8.14 ± 1.52, 17.94 ± 1.88, and 24.31 ± 2.64 μM). The chemical activities of artepillin.C and aromadendrin against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor–Like 1, M2 muscarinic receptor, and estrogen receptors) in the mentioned cell lines were assessed using the molecular docking calculations. The outcomes provided information on potential interactions and their atomic-level properties. According to the docking scores, the compounds show a high affinity for binding to proteins and enzymes. Furthermore, these substances made good contact with the receptors and enzymes. As a result, these substances may have the ability to suppress cancer cells and enzymes.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.