高分辨率石化尺度直接数值模拟:通过压力脉冲引发开尔文-赫尔姆霍兹-瑞利-泰勒不稳定性

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bhavna Joshi , Tapan K. Sengupta , Prasannabalaji Sundaram , Aditi Sengupta
{"title":"高分辨率石化尺度直接数值模拟:通过压力脉冲引发开尔文-赫尔姆霍兹-瑞利-泰勒不稳定性","authors":"Bhavna Joshi ,&nbsp;Tapan K. Sengupta ,&nbsp;Prasannabalaji Sundaram ,&nbsp;Aditi Sengupta","doi":"10.1016/j.compfluid.2024.106442","DOIUrl":null,"url":null,"abstract":"<div><div>The study presents a comprehensive numerical investigation of the Kelvin–Helmholtz Rayleigh–Taylor Instability (KHRTI) onset using highly resolved peta-scale direct numerical simulations by solving the compressible Navier–Stokes equations (NSE). The numerical framework incorporates a three-dimensional (3D) cuboidal domain with differential heating applied to two air streams, fostering the development of the KHRTI. A novel numerical methodology with selective mesh refinement near critical regions is employed with the help of a non-uniform compact scheme to capture small-scale phenomena accurately. Analysis of pressure disturbances during early KHRTI stages reveal distinct wave propagation patterns influenced by Rayleigh–Taylor (RT) and Kelvin–Helmholtz (KH) mechanisms. Enstrophy dynamics are quantified through the compressible enstrophy transport equation (CETE), highlighting dominant contributions from viscous stresses during early receptivity stages. The study provides insights into KHRTI evolution, shedding light on shear-buoyancy-driven instabilities and their implications for transition to turbulence.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"284 ","pages":"Article 106442"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly resolved peta-scale direct numerical simulations: Onset of Kelvin–Helmholtz Rayleigh–Taylor instability via pressure pulses\",\"authors\":\"Bhavna Joshi ,&nbsp;Tapan K. Sengupta ,&nbsp;Prasannabalaji Sundaram ,&nbsp;Aditi Sengupta\",\"doi\":\"10.1016/j.compfluid.2024.106442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study presents a comprehensive numerical investigation of the Kelvin–Helmholtz Rayleigh–Taylor Instability (KHRTI) onset using highly resolved peta-scale direct numerical simulations by solving the compressible Navier–Stokes equations (NSE). The numerical framework incorporates a three-dimensional (3D) cuboidal domain with differential heating applied to two air streams, fostering the development of the KHRTI. A novel numerical methodology with selective mesh refinement near critical regions is employed with the help of a non-uniform compact scheme to capture small-scale phenomena accurately. Analysis of pressure disturbances during early KHRTI stages reveal distinct wave propagation patterns influenced by Rayleigh–Taylor (RT) and Kelvin–Helmholtz (KH) mechanisms. Enstrophy dynamics are quantified through the compressible enstrophy transport equation (CETE), highlighting dominant contributions from viscous stresses during early receptivity stages. The study provides insights into KHRTI evolution, shedding light on shear-buoyancy-driven instabilities and their implications for transition to turbulence.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"284 \",\"pages\":\"Article 106442\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002731\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002731","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

该研究通过求解可压缩纳维-斯托克斯方程(NSE),利用高分辨率石油尺度直接数值模拟,对开尔文-赫尔姆霍兹-瑞利-泰勒不稳定性(KHRTI)的发生进行了全面的数值研究。数值框架包含一个三维(3D)立方体域,对两股气流进行差分加热,促进了 KHRTI 的发展。在非均匀紧凑方案的帮助下,在临界区域附近采用了选择性网格细化的新型数值方法,以准确捕捉小尺度现象。对 KHRTI 早期阶段压力扰动的分析揭示了受瑞利-泰勒(RT)和开尔文-赫姆霍兹(KH)机制影响的独特波传播模式。通过可压缩营养体输送方程(CETE)对营养体动力学进行了量化,突出了粘性应力在早期受体阶段的主要贡献。该研究提供了对 KHRTI 演变的见解,揭示了剪切浮力驱动的不稳定性及其对过渡到湍流的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly resolved peta-scale direct numerical simulations: Onset of Kelvin–Helmholtz Rayleigh–Taylor instability via pressure pulses
The study presents a comprehensive numerical investigation of the Kelvin–Helmholtz Rayleigh–Taylor Instability (KHRTI) onset using highly resolved peta-scale direct numerical simulations by solving the compressible Navier–Stokes equations (NSE). The numerical framework incorporates a three-dimensional (3D) cuboidal domain with differential heating applied to two air streams, fostering the development of the KHRTI. A novel numerical methodology with selective mesh refinement near critical regions is employed with the help of a non-uniform compact scheme to capture small-scale phenomena accurately. Analysis of pressure disturbances during early KHRTI stages reveal distinct wave propagation patterns influenced by Rayleigh–Taylor (RT) and Kelvin–Helmholtz (KH) mechanisms. Enstrophy dynamics are quantified through the compressible enstrophy transport equation (CETE), highlighting dominant contributions from viscous stresses during early receptivity stages. The study provides insights into KHRTI evolution, shedding light on shear-buoyancy-driven instabilities and their implications for transition to turbulence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信