Shen Gao , Xian Wang , Yunxiao Wang , Yanxing Zhao , Maoqiong Gong
{"title":"利用深度算子网络预测冷冻溶脂过程中的皮下温度","authors":"Shen Gao , Xian Wang , Yunxiao Wang , Yanxing Zhao , Maoqiong Gong","doi":"10.1016/j.tsep.2024.102946","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate monitoring of subcutaneous temperature is crucial for the safety and efficacy of cryolipolysis. However, existing measurement and simulation methods often require trade-offs between accuracy, depth, and computational efficiency. This study introduces a novel deep learning architecture, ConvD-DeepONet, specifically designed to predict subcutaneous temperature fields with both high accuracy and efficiency. The model effectively captures spatial information and produces multi-dimensional output, owing to the innovative integration of convolutional layers and the decoder network. An average absolute error (MAE) of 0.0038 ℃ and a root mean square error (RMSE) of 0.0083 ℃ are achieved, resulting in over a 50 % reduction compared to the baseline models. Moreover, each prediction is completed in just 5.9 ms, rendering it 120 times faster than traditional finite element method simulations. These results indicate that ConvD-DeepONet is a promising tool for real-time subcutaneous temperature prediction, with the potential to enhance the safety and efficacy of cryolipolysis.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"55 ","pages":"Article 102946"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the subcutaneous temperature in cryolipolysis using deep operator networks\",\"authors\":\"Shen Gao , Xian Wang , Yunxiao Wang , Yanxing Zhao , Maoqiong Gong\",\"doi\":\"10.1016/j.tsep.2024.102946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate monitoring of subcutaneous temperature is crucial for the safety and efficacy of cryolipolysis. However, existing measurement and simulation methods often require trade-offs between accuracy, depth, and computational efficiency. This study introduces a novel deep learning architecture, ConvD-DeepONet, specifically designed to predict subcutaneous temperature fields with both high accuracy and efficiency. The model effectively captures spatial information and produces multi-dimensional output, owing to the innovative integration of convolutional layers and the decoder network. An average absolute error (MAE) of 0.0038 ℃ and a root mean square error (RMSE) of 0.0083 ℃ are achieved, resulting in over a 50 % reduction compared to the baseline models. Moreover, each prediction is completed in just 5.9 ms, rendering it 120 times faster than traditional finite element method simulations. These results indicate that ConvD-DeepONet is a promising tool for real-time subcutaneous temperature prediction, with the potential to enhance the safety and efficacy of cryolipolysis.</div></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":\"55 \",\"pages\":\"Article 102946\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245190492400564X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190492400564X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Predicting the subcutaneous temperature in cryolipolysis using deep operator networks
Accurate monitoring of subcutaneous temperature is crucial for the safety and efficacy of cryolipolysis. However, existing measurement and simulation methods often require trade-offs between accuracy, depth, and computational efficiency. This study introduces a novel deep learning architecture, ConvD-DeepONet, specifically designed to predict subcutaneous temperature fields with both high accuracy and efficiency. The model effectively captures spatial information and produces multi-dimensional output, owing to the innovative integration of convolutional layers and the decoder network. An average absolute error (MAE) of 0.0038 ℃ and a root mean square error (RMSE) of 0.0083 ℃ are achieved, resulting in over a 50 % reduction compared to the baseline models. Moreover, each prediction is completed in just 5.9 ms, rendering it 120 times faster than traditional finite element method simulations. These results indicate that ConvD-DeepONet is a promising tool for real-time subcutaneous temperature prediction, with the potential to enhance the safety and efficacy of cryolipolysis.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.