John Gostage, Paul Kostenuik, Katarzyna Goljanek-Whysall, Ilaria Bellantuono, Eugene McCloskey, Nicolas Bonnet
{"title":"RANK-RANKL-OPG 轴在骨外的作用,重点关注骨骼肌。","authors":"John Gostage, Paul Kostenuik, Katarzyna Goljanek-Whysall, Ilaria Bellantuono, Eugene McCloskey, Nicolas Bonnet","doi":"10.1007/s11914-024-00890-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>This review aims to consolidate recent observations regarding extra-osseous roles of the RANK-RANKL-OPG axis, primarily within skeletal muscle.</p><p><strong>Recent findings: </strong>Preclinical efforts to decipher a common signalling pathway that links the synchronous decline in bone and muscle health in ageing and disease disclosed a potential role of the RANK-RANKL-OPG axis in skeletal muscle. Evidence suggests RANKL inhibition benefits skeletal muscle function, mass, fibre-type switching, calcium homeostasis and reduces fall incidence. However, there still exists ambiguity regarding the exact mechanistic actions and subsequent functional improvements. Other potential RANK-RANKL-OPG extra-osseous roles include regulation of neural-inflammation and glucose metabolism. Growing evidence suggests the RANK-RANKL-OPG axis may play a regulatory role in extra-osseous tissues, especially in skeletal muscle. Targeting RANKL may be a novel therapy in ameliorating loss of muscle mass and function. More research is warranted to determine the causality of the RANK-RANKL-OPG axis in extra-osseous tissues, especially those affected by aging.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"632-650"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extra-osseous Roles of the RANK-RANKL-OPG Axis with a Focus on Skeletal Muscle.\",\"authors\":\"John Gostage, Paul Kostenuik, Katarzyna Goljanek-Whysall, Ilaria Bellantuono, Eugene McCloskey, Nicolas Bonnet\",\"doi\":\"10.1007/s11914-024-00890-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>This review aims to consolidate recent observations regarding extra-osseous roles of the RANK-RANKL-OPG axis, primarily within skeletal muscle.</p><p><strong>Recent findings: </strong>Preclinical efforts to decipher a common signalling pathway that links the synchronous decline in bone and muscle health in ageing and disease disclosed a potential role of the RANK-RANKL-OPG axis in skeletal muscle. Evidence suggests RANKL inhibition benefits skeletal muscle function, mass, fibre-type switching, calcium homeostasis and reduces fall incidence. However, there still exists ambiguity regarding the exact mechanistic actions and subsequent functional improvements. Other potential RANK-RANKL-OPG extra-osseous roles include regulation of neural-inflammation and glucose metabolism. Growing evidence suggests the RANK-RANKL-OPG axis may play a regulatory role in extra-osseous tissues, especially in skeletal muscle. Targeting RANKL may be a novel therapy in ameliorating loss of muscle mass and function. More research is warranted to determine the causality of the RANK-RANKL-OPG axis in extra-osseous tissues, especially those affected by aging.</p>\",\"PeriodicalId\":48750,\"journal\":{\"name\":\"Current Osteoporosis Reports\",\"volume\":\" \",\"pages\":\"632-650\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Osteoporosis Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11914-024-00890-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Osteoporosis Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11914-024-00890-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Extra-osseous Roles of the RANK-RANKL-OPG Axis with a Focus on Skeletal Muscle.
Purpose of review: This review aims to consolidate recent observations regarding extra-osseous roles of the RANK-RANKL-OPG axis, primarily within skeletal muscle.
Recent findings: Preclinical efforts to decipher a common signalling pathway that links the synchronous decline in bone and muscle health in ageing and disease disclosed a potential role of the RANK-RANKL-OPG axis in skeletal muscle. Evidence suggests RANKL inhibition benefits skeletal muscle function, mass, fibre-type switching, calcium homeostasis and reduces fall incidence. However, there still exists ambiguity regarding the exact mechanistic actions and subsequent functional improvements. Other potential RANK-RANKL-OPG extra-osseous roles include regulation of neural-inflammation and glucose metabolism. Growing evidence suggests the RANK-RANKL-OPG axis may play a regulatory role in extra-osseous tissues, especially in skeletal muscle. Targeting RANKL may be a novel therapy in ameliorating loss of muscle mass and function. More research is warranted to determine the causality of the RANK-RANKL-OPG axis in extra-osseous tissues, especially those affected by aging.
期刊介绍:
This journal intends to provide clear, insightful, balanced contributions by international experts that review the most important, recently published clinical findings related to the diagnosis, treatment, management, and prevention of osteoporosis.
We accomplish this aim by appointing international authorities to serve as Section Editors in key subject areas, such as current and future therapeutics, epidemiology and pathophysiology, and evaluation and management. Section Editors, in turn, select topics for which leading experts contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, highlighted by annotated reference lists. An international Editorial Board reviews the annual table of contents, suggests articles of special interest to their country/region, and ensures that topics are current and include emerging research. Commentaries from well-known figures in the field are also provided.