RSAD2 通过与塞内卡病毒 A 2 C 蛋白相互作用来抑制病毒复制。

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Lei Hou, Zhi Wu, Penghui Zeng, Xiaoyu Yang, Yongyan Shi, Jinshuo Guo, Jianwei Zhou, Jiangwei Song, Jue Liu
{"title":"RSAD2 通过与塞内卡病毒 A 2 C 蛋白相互作用来抑制病毒复制。","authors":"Lei Hou, Zhi Wu, Penghui Zeng, Xiaoyu Yang, Yongyan Shi, Jinshuo Guo, Jianwei Zhou, Jiangwei Song, Jue Liu","doi":"10.1186/s13567-024-01370-2","DOIUrl":null,"url":null,"abstract":"<p><p>Senecavirus A (SVA), an emerging virus that causes blisters on the nose and hooves, reduces the production performance of pigs. RSAD2 is a radical S-adenosylmethionine (SAM) enzyme, and its expression can suppress various viruses due to its broad antiviral activity. However, the regulatory relationship between SVA and RSAD2 and the mechanism of action remain unclear. Here, we demonstrated that SVA infection increased RSAD2 mRNA levels, whereas RSAD2 expression negatively regulated viral replication, as evidenced by decreased viral VP1 protein expression, viral titres, and infected cell numbers. Viral proteins that interact with RSAD2 were screened, and the interaction between the 2 C protein and RSAD2 was found to be stronger than that between other proteins. Additionally, amino acids (aa) 43-70 of RSAD2 were crucial for interacting with the 2 C protein and played an important role in its anti-SVA activity. RSAD2 was induced by type I interferon (IFN-I) via Janus kinase signal transducer and activator of transcription (JAK-STAT), and had antiviral activity. Ruxolitinib, a JAK-STAT pathway inhibitor, and the knockdown of JAK1 expression substantially reduced RSAD2 expression levels and antiviral activity. Taken together, these results revealed that RSAD2 blocked SVA infection by interacting with the viral 2 C protein and provide a strategy for preventing and controlling SVA infection.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"115"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430333/pdf/","citationCount":"0","resultStr":"{\"title\":\"RSAD2 suppresses viral replication by interacting with the Senecavirus A 2 C protein.\",\"authors\":\"Lei Hou, Zhi Wu, Penghui Zeng, Xiaoyu Yang, Yongyan Shi, Jinshuo Guo, Jianwei Zhou, Jiangwei Song, Jue Liu\",\"doi\":\"10.1186/s13567-024-01370-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senecavirus A (SVA), an emerging virus that causes blisters on the nose and hooves, reduces the production performance of pigs. RSAD2 is a radical S-adenosylmethionine (SAM) enzyme, and its expression can suppress various viruses due to its broad antiviral activity. However, the regulatory relationship between SVA and RSAD2 and the mechanism of action remain unclear. Here, we demonstrated that SVA infection increased RSAD2 mRNA levels, whereas RSAD2 expression negatively regulated viral replication, as evidenced by decreased viral VP1 protein expression, viral titres, and infected cell numbers. Viral proteins that interact with RSAD2 were screened, and the interaction between the 2 C protein and RSAD2 was found to be stronger than that between other proteins. Additionally, amino acids (aa) 43-70 of RSAD2 were crucial for interacting with the 2 C protein and played an important role in its anti-SVA activity. RSAD2 was induced by type I interferon (IFN-I) via Janus kinase signal transducer and activator of transcription (JAK-STAT), and had antiviral activity. Ruxolitinib, a JAK-STAT pathway inhibitor, and the knockdown of JAK1 expression substantially reduced RSAD2 expression levels and antiviral activity. Taken together, these results revealed that RSAD2 blocked SVA infection by interacting with the viral 2 C protein and provide a strategy for preventing and controlling SVA infection.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"55 1\",\"pages\":\"115\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-024-01370-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01370-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

塞内卡病毒 A(SVA)是一种新出现的病毒,会导致猪的鼻子和蹄子出现水泡,降低猪的生产性能。RSAD2 是一种自由基 S-腺苷蛋氨酸(SAM)酶,其表达可抑制多种病毒,具有广泛的抗病毒活性。然而,SVA 与 RSAD2 之间的调控关系和作用机制仍不清楚。在这里,我们证明了 SVA 感染会增加 RSAD2 的 mRNA 水平,而 RSAD2 的表达对病毒复制有负向调节作用,病毒 VP1 蛋白表达、病毒滴度和感染细胞数量的减少就是证明。对与 RSAD2 相互作用的病毒蛋白进行了筛选,发现 2 C 蛋白与 RSAD2 之间的相互作用强于其他蛋白之间的相互作用。此外,RSAD2的第43-70个氨基酸是与2 C蛋白相互作用的关键,在其抗SVA活性中起着重要作用。I型干扰素(IFN-I)可通过Janus激酶信号转导子和转录激活子(JAK-STAT)诱导RSAD2,并使其具有抗病毒活性。JAK-STAT通路抑制剂鲁索利替尼(Ruxolitinib)和敲除JAK1表达可大幅降低RSAD2的表达水平和抗病毒活性。综上所述,这些结果揭示了RSAD2通过与病毒2 C蛋白相互作用来阻断SVA感染,为预防和控制SVA感染提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSAD2 suppresses viral replication by interacting with the Senecavirus A 2 C protein.

Senecavirus A (SVA), an emerging virus that causes blisters on the nose and hooves, reduces the production performance of pigs. RSAD2 is a radical S-adenosylmethionine (SAM) enzyme, and its expression can suppress various viruses due to its broad antiviral activity. However, the regulatory relationship between SVA and RSAD2 and the mechanism of action remain unclear. Here, we demonstrated that SVA infection increased RSAD2 mRNA levels, whereas RSAD2 expression negatively regulated viral replication, as evidenced by decreased viral VP1 protein expression, viral titres, and infected cell numbers. Viral proteins that interact with RSAD2 were screened, and the interaction between the 2 C protein and RSAD2 was found to be stronger than that between other proteins. Additionally, amino acids (aa) 43-70 of RSAD2 were crucial for interacting with the 2 C protein and played an important role in its anti-SVA activity. RSAD2 was induced by type I interferon (IFN-I) via Janus kinase signal transducer and activator of transcription (JAK-STAT), and had antiviral activity. Ruxolitinib, a JAK-STAT pathway inhibitor, and the knockdown of JAK1 expression substantially reduced RSAD2 expression levels and antiviral activity. Taken together, these results revealed that RSAD2 blocked SVA infection by interacting with the viral 2 C protein and provide a strategy for preventing and controlling SVA infection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信