Amadou Garba Djirmay, Rajpal Singh Yadav, Jiagang Guo, David Rollinson, Henry Madsen
{"title":"作为消除血吸虫病战略综合组成部分的蜗牛病媒化学控制--知识现状与未来需求回顾。","authors":"Amadou Garba Djirmay, Rajpal Singh Yadav, Jiagang Guo, David Rollinson, Henry Madsen","doi":"10.3390/tropicalmed9090222","DOIUrl":null,"url":null,"abstract":"<p><p>WHO promotes the implementation of a comprehensive strategy to control and eliminate schistosomiasis through preventive chemotherapy, snail control, clean water supply, improved sanitation, behaviour change interventions, and environmental management. The transmission of schistosomiasis involves infected definitive hosts (humans or animals) excreting eggs that hatch (miracidia), which infect freshwater snail vectors (also referred to as intermediate snail hosts) living in marshlands, ponds, lakes, rivers, or irrigation canals. Infective larvae (cercariae) develop within the snail, which, when released, may infect humans and/or animals in contact with the water. Snail control aims to interrupt the transmission cycle of the disease by removing the vector snails and, by so doing, indirectly improves the impact of the preventive chemotherapy by reducing reinfection. Snail control was, for many years, the only strategy for the prevention of schistosomiasis before preventive chemotherapy became the primary intervention. Snails can be controlled through various methods: environmental control, biological control, and chemical control. The chemical control of snails has proven to be the most effective method to interrupt the transmission of schistosomiasis. The current review aims to describe the vector snails of human schistosomiasis, present the chemicals and strategies for the control of snails, the challenges with the implementation, and the future needs. Snail control can play a key role in reducing schistosomiasis transmission and, thus, complements other interventions for disease control. There is a need to develop new molluscicide products or new formulations and methods of applications for existing molluscicides that would target snail vectors more specifically.</p>","PeriodicalId":23330,"journal":{"name":"Tropical Medicine and Infectious Disease","volume":"9 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435910/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis-A Review of the State of Knowledge and Future Needs.\",\"authors\":\"Amadou Garba Djirmay, Rajpal Singh Yadav, Jiagang Guo, David Rollinson, Henry Madsen\",\"doi\":\"10.3390/tropicalmed9090222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>WHO promotes the implementation of a comprehensive strategy to control and eliminate schistosomiasis through preventive chemotherapy, snail control, clean water supply, improved sanitation, behaviour change interventions, and environmental management. The transmission of schistosomiasis involves infected definitive hosts (humans or animals) excreting eggs that hatch (miracidia), which infect freshwater snail vectors (also referred to as intermediate snail hosts) living in marshlands, ponds, lakes, rivers, or irrigation canals. Infective larvae (cercariae) develop within the snail, which, when released, may infect humans and/or animals in contact with the water. Snail control aims to interrupt the transmission cycle of the disease by removing the vector snails and, by so doing, indirectly improves the impact of the preventive chemotherapy by reducing reinfection. Snail control was, for many years, the only strategy for the prevention of schistosomiasis before preventive chemotherapy became the primary intervention. Snails can be controlled through various methods: environmental control, biological control, and chemical control. The chemical control of snails has proven to be the most effective method to interrupt the transmission of schistosomiasis. The current review aims to describe the vector snails of human schistosomiasis, present the chemicals and strategies for the control of snails, the challenges with the implementation, and the future needs. Snail control can play a key role in reducing schistosomiasis transmission and, thus, complements other interventions for disease control. There is a need to develop new molluscicide products or new formulations and methods of applications for existing molluscicides that would target snail vectors more specifically.</p>\",\"PeriodicalId\":23330,\"journal\":{\"name\":\"Tropical Medicine and Infectious Disease\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435910/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Medicine and Infectious Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tropicalmed9090222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine and Infectious Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tropicalmed9090222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Chemical Control of Snail Vectors as an Integrated Part of a Strategy for the Elimination of Schistosomiasis-A Review of the State of Knowledge and Future Needs.
WHO promotes the implementation of a comprehensive strategy to control and eliminate schistosomiasis through preventive chemotherapy, snail control, clean water supply, improved sanitation, behaviour change interventions, and environmental management. The transmission of schistosomiasis involves infected definitive hosts (humans or animals) excreting eggs that hatch (miracidia), which infect freshwater snail vectors (also referred to as intermediate snail hosts) living in marshlands, ponds, lakes, rivers, or irrigation canals. Infective larvae (cercariae) develop within the snail, which, when released, may infect humans and/or animals in contact with the water. Snail control aims to interrupt the transmission cycle of the disease by removing the vector snails and, by so doing, indirectly improves the impact of the preventive chemotherapy by reducing reinfection. Snail control was, for many years, the only strategy for the prevention of schistosomiasis before preventive chemotherapy became the primary intervention. Snails can be controlled through various methods: environmental control, biological control, and chemical control. The chemical control of snails has proven to be the most effective method to interrupt the transmission of schistosomiasis. The current review aims to describe the vector snails of human schistosomiasis, present the chemicals and strategies for the control of snails, the challenges with the implementation, and the future needs. Snail control can play a key role in reducing schistosomiasis transmission and, thus, complements other interventions for disease control. There is a need to develop new molluscicide products or new formulations and methods of applications for existing molluscicides that would target snail vectors more specifically.