图尔基耶小反刍兽疫(PPR)的时空聚类分析和最大熵模型。

IF 1.7 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Tuba Bayir, İsmayil Safa Gürcan
{"title":"图尔基耶小反刍兽疫(PPR)的时空聚类分析和最大熵模型。","authors":"Tuba Bayir, İsmayil Safa Gürcan","doi":"10.1007/s11250-024-04180-y","DOIUrl":null,"url":null,"abstract":"<p><p>Peste des petits ruminants (PPR) is an economically important highly serious transboundary disease that mainly occurs in small ruminants such as sheep and goats. The aim of this study was to identify the probability of risk and and space-time clusters of Peste des Petits Ruminants (PPR) in Türkiye. The occurrence of PPR in Türkiye from 2017 to 2019 was investigated in this study using spatial analysis based on geographic information system (GIS). Between these dates, it was determined that 337 outbreaks and 18,467 cases. The highest number of outbreaks were detected in the Central Anatolia region. It was determined that PPR is seen more intensely in sheep compared to goats in Türkiye. In this study, 34 environmental variables (19 bioclimatic, 12 precipitation, altitude and small livestock density variables) were used to explore the environmental influences on PPR outbreak by maximum entropy modeling (Maxent). The clusters of PPR in Türkiye were identified using the retrospective space-time scan data that were computed using the space-time permutation model. A PPR prediction model was created using data on PPR outbreaks combination with environmental variables. Nineteen significant (p < 0.001) space-time clusters were determined. It was discovered that the variables altitude, sheep density, precipitation in june, and average temperature in the warmest season made important contributions to the model and the PPR outbreak may be strongly related with these variables. In this study, PPR in Türkiye has been characterized significantly spatio-temporal and enviromental factors. In this context, the disease pattern and obtained these findings will contribute to policymakers in the prevention and control of the disease.</p>","PeriodicalId":23329,"journal":{"name":"Tropical animal health and production","volume":"56 8","pages":"290"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time cluster analysis and maximum entropy modeling of Peste des petits ruminants (PPR) in Türkiye.\",\"authors\":\"Tuba Bayir, İsmayil Safa Gürcan\",\"doi\":\"10.1007/s11250-024-04180-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peste des petits ruminants (PPR) is an economically important highly serious transboundary disease that mainly occurs in small ruminants such as sheep and goats. The aim of this study was to identify the probability of risk and and space-time clusters of Peste des Petits Ruminants (PPR) in Türkiye. The occurrence of PPR in Türkiye from 2017 to 2019 was investigated in this study using spatial analysis based on geographic information system (GIS). Between these dates, it was determined that 337 outbreaks and 18,467 cases. The highest number of outbreaks were detected in the Central Anatolia region. It was determined that PPR is seen more intensely in sheep compared to goats in Türkiye. In this study, 34 environmental variables (19 bioclimatic, 12 precipitation, altitude and small livestock density variables) were used to explore the environmental influences on PPR outbreak by maximum entropy modeling (Maxent). The clusters of PPR in Türkiye were identified using the retrospective space-time scan data that were computed using the space-time permutation model. A PPR prediction model was created using data on PPR outbreaks combination with environmental variables. Nineteen significant (p < 0.001) space-time clusters were determined. It was discovered that the variables altitude, sheep density, precipitation in june, and average temperature in the warmest season made important contributions to the model and the PPR outbreak may be strongly related with these variables. In this study, PPR in Türkiye has been characterized significantly spatio-temporal and enviromental factors. In this context, the disease pattern and obtained these findings will contribute to policymakers in the prevention and control of the disease.</p>\",\"PeriodicalId\":23329,\"journal\":{\"name\":\"Tropical animal health and production\",\"volume\":\"56 8\",\"pages\":\"290\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical animal health and production\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11250-024-04180-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical animal health and production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11250-024-04180-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

小反刍兽疫(PPR)是一种主要发生在绵羊和山羊等小型反刍动物身上的经济上非常重要的跨境疾病。本研究旨在确定土尔其小反刍兽疫(PPR)的风险概率和时空集群。本研究采用基于地理信息系统(GIS)的空间分析方法,调查了 2017 年至 2019 年反刍兽疫在土耳其的发生情况。在这些日期之间,共确定发生了 337 起疫情和 18467 例病例。安纳托利亚中部地区发现的疫情最多。研究发现,在土耳其,绵羊比山羊更容易感染 PPR。本研究利用 34 个环境变量(19 个生物气候变量、12 个降水变量、海拔变量和小型牲畜密度变量),通过最大熵模型(Maxent)探讨了环境对 PPR 爆发的影响。使用时空排列模型计算的回顾性时空扫描数据确定了图尔基耶的 PPR 集群。利用与环境变量相结合的 PPR 爆发数据创建了 PPR 预测模型。19 个显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-time cluster analysis and maximum entropy modeling of Peste des petits ruminants (PPR) in Türkiye.

Peste des petits ruminants (PPR) is an economically important highly serious transboundary disease that mainly occurs in small ruminants such as sheep and goats. The aim of this study was to identify the probability of risk and and space-time clusters of Peste des Petits Ruminants (PPR) in Türkiye. The occurrence of PPR in Türkiye from 2017 to 2019 was investigated in this study using spatial analysis based on geographic information system (GIS). Between these dates, it was determined that 337 outbreaks and 18,467 cases. The highest number of outbreaks were detected in the Central Anatolia region. It was determined that PPR is seen more intensely in sheep compared to goats in Türkiye. In this study, 34 environmental variables (19 bioclimatic, 12 precipitation, altitude and small livestock density variables) were used to explore the environmental influences on PPR outbreak by maximum entropy modeling (Maxent). The clusters of PPR in Türkiye were identified using the retrospective space-time scan data that were computed using the space-time permutation model. A PPR prediction model was created using data on PPR outbreaks combination with environmental variables. Nineteen significant (p < 0.001) space-time clusters were determined. It was discovered that the variables altitude, sheep density, precipitation in june, and average temperature in the warmest season made important contributions to the model and the PPR outbreak may be strongly related with these variables. In this study, PPR in Türkiye has been characterized significantly spatio-temporal and enviromental factors. In this context, the disease pattern and obtained these findings will contribute to policymakers in the prevention and control of the disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical animal health and production
Tropical animal health and production 农林科学-兽医学
CiteScore
3.40
自引率
11.80%
发文量
361
审稿时长
6-12 weeks
期刊介绍: Tropical Animal Health and Production is an international journal publishing the results of original research in any field of animal health, welfare, and production with the aim of improving health and productivity of livestock, and better utilisation of animal resources, including wildlife in tropical, subtropical and similar agro-ecological environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信