Sarah Kröller, Jana Schober, Nadine Krieg, Sophie Dennhardt, Wiebke Pirschel, Michael Kiehntopf, Edward M Conway, Sina M Coldewey
{"title":"血栓调节蛋白 N 端域的作用和重组人血栓调节蛋白作为滋贺毒素诱发的溶血性尿毒症治疗干预措施的潜力。","authors":"Sarah Kröller, Jana Schober, Nadine Krieg, Sophie Dennhardt, Wiebke Pirschel, Michael Kiehntopf, Edward M Conway, Sina M Coldewey","doi":"10.3390/toxins16090409","DOIUrl":null,"url":null,"abstract":"<p><p>Hemolytic-uremic syndrome (HUS) is a rare complication of an infection with Shiga toxin (Stx)-producing <i>Escherichia coli</i> (STEC-HUS), characterized by severe acute kidney injury, thrombocytopenia and microangiopathic hemolytic anemia, and specific therapy is still lacking. Thrombomodulin (TM) is a multi-domain transmembrane endothelial cell protein and its N-terminal domain has been implicated in the pathophysiology of some cases of HUS. Indeed, the administration of recombinant human TM (rhTM) may have efficacy in HUS. We used a Stx-based murine model of HUS to characterize the role of the N-terminal domain of TM. We show that mice lacking that domain (TMLed (-/-)) are more sensitive to Stx, with enhanced HUS progression seen at 4 days and increased mortality at 7 days post-HUS induction. In spite of these changes, renal function was less affected in surviving Stx-challenged TMLed (-/-) mice compared to their wild-type counterparts TMLed (+/+) at 7 days. Contrary to few clinical case reports from Japan, the administration of rhTM (0.06 mg/kg) to wild-type mice (C57BL/6J) with HUS did not protect against disease progression. This overall promising, but also contradictory body of evidence, requires further systematic preclinical and clinical investigations to clarify the role of TM in HUS as a potential therapeutic strategy.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"16 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435709/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of the N-Terminal Domain of Thrombomodulin and the Potential of Recombinant Human Thrombomodulin as a Therapeutic Intervention for Shiga Toxin-Induced Hemolytic-Uremic Syndrome.\",\"authors\":\"Sarah Kröller, Jana Schober, Nadine Krieg, Sophie Dennhardt, Wiebke Pirschel, Michael Kiehntopf, Edward M Conway, Sina M Coldewey\",\"doi\":\"10.3390/toxins16090409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemolytic-uremic syndrome (HUS) is a rare complication of an infection with Shiga toxin (Stx)-producing <i>Escherichia coli</i> (STEC-HUS), characterized by severe acute kidney injury, thrombocytopenia and microangiopathic hemolytic anemia, and specific therapy is still lacking. Thrombomodulin (TM) is a multi-domain transmembrane endothelial cell protein and its N-terminal domain has been implicated in the pathophysiology of some cases of HUS. Indeed, the administration of recombinant human TM (rhTM) may have efficacy in HUS. We used a Stx-based murine model of HUS to characterize the role of the N-terminal domain of TM. We show that mice lacking that domain (TMLed (-/-)) are more sensitive to Stx, with enhanced HUS progression seen at 4 days and increased mortality at 7 days post-HUS induction. In spite of these changes, renal function was less affected in surviving Stx-challenged TMLed (-/-) mice compared to their wild-type counterparts TMLed (+/+) at 7 days. Contrary to few clinical case reports from Japan, the administration of rhTM (0.06 mg/kg) to wild-type mice (C57BL/6J) with HUS did not protect against disease progression. This overall promising, but also contradictory body of evidence, requires further systematic preclinical and clinical investigations to clarify the role of TM in HUS as a potential therapeutic strategy.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435709/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins16090409\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16090409","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Role of the N-Terminal Domain of Thrombomodulin and the Potential of Recombinant Human Thrombomodulin as a Therapeutic Intervention for Shiga Toxin-Induced Hemolytic-Uremic Syndrome.
Hemolytic-uremic syndrome (HUS) is a rare complication of an infection with Shiga toxin (Stx)-producing Escherichia coli (STEC-HUS), characterized by severe acute kidney injury, thrombocytopenia and microangiopathic hemolytic anemia, and specific therapy is still lacking. Thrombomodulin (TM) is a multi-domain transmembrane endothelial cell protein and its N-terminal domain has been implicated in the pathophysiology of some cases of HUS. Indeed, the administration of recombinant human TM (rhTM) may have efficacy in HUS. We used a Stx-based murine model of HUS to characterize the role of the N-terminal domain of TM. We show that mice lacking that domain (TMLed (-/-)) are more sensitive to Stx, with enhanced HUS progression seen at 4 days and increased mortality at 7 days post-HUS induction. In spite of these changes, renal function was less affected in surviving Stx-challenged TMLed (-/-) mice compared to their wild-type counterparts TMLed (+/+) at 7 days. Contrary to few clinical case reports from Japan, the administration of rhTM (0.06 mg/kg) to wild-type mice (C57BL/6J) with HUS did not protect against disease progression. This overall promising, but also contradictory body of evidence, requires further systematic preclinical and clinical investigations to clarify the role of TM in HUS as a potential therapeutic strategy.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.