Eliana Ege, Daniel Briggi, Peter Vu, Jianguo Cheng, Feng Lin, Jijun Xu
{"title":"以背根神经节为靶点治疗化疗引起的周围神经病变:从实验室到床边。","authors":"Eliana Ege, Daniel Briggi, Peter Vu, Jianguo Cheng, Feng Lin, Jijun Xu","doi":"10.1177/17562864241252718","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition affecting an increasing number of cancer survivors worldwide. However, insights into its pathophysiology and availability of effective therapies remain lacking. Dorsal root ganglia (DRG) have been studied as a key component of chemotherapeutic drug toxicity and a potential therapeutic target for CIPN treatment. This comprehensive review aims to synthesize, summarize, and correlate the results of both preclinical and clinical studies relevant to the pathophysiology and management of CIPN in relation to the DRG. Design: Review. A thorough literature search was conducted using the terms 'dorsal root ganglion' and 'chemotherapy-induced peripheral neuropathy', along with appropriate variations. Searched databases included PubMed, EMBASE, Medline, Cochrane Library, Wiley Library, and Web of Science. Inclusion criteria targeted all English language, peer-reviewed original research from the inception of these databases to the present year. Review articles, book chapters, and other nonoriginal publications were excluded. Of 134 relevant studies identified, the majority were preclinical studies elucidating how various chemotherapeutic agents, especially taxanes, disrupt neurotransmission, inflammatory processes, and apoptotic pathways within sensory neurons of DRG. Not only do these effects correlate with the presentation of CIPN, but their disruption has also been shown to reduce CIPN symptoms in preclinical models. However, clinical studies addressing DRG interventions are very limited in number and scope at this time. These results reveal various pathways within DRG that may be effective targets for CIPN treatment. While limited, clinical studies do offer promise in the utility of DRG neuromodulation in managing painful CIPN. In the future, clinical trials are needed to assess interventions aimed at these neuronal and nonneuronal pathological targets to better treat this complex condition.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting dorsal root ganglia for chemotherapy-induced peripheral neuropathy: from bench to bedside.\",\"authors\":\"Eliana Ege, Daniel Briggi, Peter Vu, Jianguo Cheng, Feng Lin, Jijun Xu\",\"doi\":\"10.1177/17562864241252718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition affecting an increasing number of cancer survivors worldwide. However, insights into its pathophysiology and availability of effective therapies remain lacking. Dorsal root ganglia (DRG) have been studied as a key component of chemotherapeutic drug toxicity and a potential therapeutic target for CIPN treatment. This comprehensive review aims to synthesize, summarize, and correlate the results of both preclinical and clinical studies relevant to the pathophysiology and management of CIPN in relation to the DRG. Design: Review. A thorough literature search was conducted using the terms 'dorsal root ganglion' and 'chemotherapy-induced peripheral neuropathy', along with appropriate variations. Searched databases included PubMed, EMBASE, Medline, Cochrane Library, Wiley Library, and Web of Science. Inclusion criteria targeted all English language, peer-reviewed original research from the inception of these databases to the present year. Review articles, book chapters, and other nonoriginal publications were excluded. Of 134 relevant studies identified, the majority were preclinical studies elucidating how various chemotherapeutic agents, especially taxanes, disrupt neurotransmission, inflammatory processes, and apoptotic pathways within sensory neurons of DRG. Not only do these effects correlate with the presentation of CIPN, but their disruption has also been shown to reduce CIPN symptoms in preclinical models. However, clinical studies addressing DRG interventions are very limited in number and scope at this time. These results reveal various pathways within DRG that may be effective targets for CIPN treatment. While limited, clinical studies do offer promise in the utility of DRG neuromodulation in managing painful CIPN. In the future, clinical trials are needed to assess interventions aimed at these neuronal and nonneuronal pathological targets to better treat this complex condition.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17562864241252718\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562864241252718","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Targeting dorsal root ganglia for chemotherapy-induced peripheral neuropathy: from bench to bedside.
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating condition affecting an increasing number of cancer survivors worldwide. However, insights into its pathophysiology and availability of effective therapies remain lacking. Dorsal root ganglia (DRG) have been studied as a key component of chemotherapeutic drug toxicity and a potential therapeutic target for CIPN treatment. This comprehensive review aims to synthesize, summarize, and correlate the results of both preclinical and clinical studies relevant to the pathophysiology and management of CIPN in relation to the DRG. Design: Review. A thorough literature search was conducted using the terms 'dorsal root ganglion' and 'chemotherapy-induced peripheral neuropathy', along with appropriate variations. Searched databases included PubMed, EMBASE, Medline, Cochrane Library, Wiley Library, and Web of Science. Inclusion criteria targeted all English language, peer-reviewed original research from the inception of these databases to the present year. Review articles, book chapters, and other nonoriginal publications were excluded. Of 134 relevant studies identified, the majority were preclinical studies elucidating how various chemotherapeutic agents, especially taxanes, disrupt neurotransmission, inflammatory processes, and apoptotic pathways within sensory neurons of DRG. Not only do these effects correlate with the presentation of CIPN, but their disruption has also been shown to reduce CIPN symptoms in preclinical models. However, clinical studies addressing DRG interventions are very limited in number and scope at this time. These results reveal various pathways within DRG that may be effective targets for CIPN treatment. While limited, clinical studies do offer promise in the utility of DRG neuromodulation in managing painful CIPN. In the future, clinical trials are needed to assess interventions aimed at these neuronal and nonneuronal pathological targets to better treat this complex condition.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.