Akram Hassanpouryouzband, Iraj Ahadzadeh, Abbas Mehrdad, Somayyeh Panahpour
{"title":"开发和制造用于测量液体介电常数的成本效益型非接触式仪器。","authors":"Akram Hassanpouryouzband, Iraj Ahadzadeh, Abbas Mehrdad, Somayyeh Panahpour","doi":"10.1063/5.0223926","DOIUrl":null,"url":null,"abstract":"<p><p>This research presents the development and construction of a cost-effective instrument, designed to measure the dielectric constant of liquids by employing a non-contact method that relies on determining the capacitance of a cell containing the liquid and its relaxation frequency. This instrument utilizes an astable multi-vibrator integrated with a resistance-capacitor network, in which the cell housing the liquid of interest functions as a capacitor element of the oscillator. The frequency of the generated oscillations is meticulously recorded using a seven-digit frequency meter with a resolution of 1 Hz. The cell was filled with an array of pure liquids with known dielectric constants, and their frequencies were subsequently recorded at ambient temperatures. An equation was fitted to the frequency-dielectric constant curve, which was used as a calibration equation to determine the dielectric constant of subsequent liquids. In addition to pure liquids, dielectric constants for solvent mixtures of varying mole fractions were also calculated using the previously established calibration equation. Our results demonstrated excellent frequency stability of the instrument, and the obtained dielectric constant values displayed significant consistency with both the experimental data and predictions made by computational methodologies. This suggests that the constructed instrument exhibits a high level of accuracy in measuring the dielectric constant of both pure and mixed liquids, establishing its potential utility in relevant research and industrial applications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids.\",\"authors\":\"Akram Hassanpouryouzband, Iraj Ahadzadeh, Abbas Mehrdad, Somayyeh Panahpour\",\"doi\":\"10.1063/5.0223926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research presents the development and construction of a cost-effective instrument, designed to measure the dielectric constant of liquids by employing a non-contact method that relies on determining the capacitance of a cell containing the liquid and its relaxation frequency. This instrument utilizes an astable multi-vibrator integrated with a resistance-capacitor network, in which the cell housing the liquid of interest functions as a capacitor element of the oscillator. The frequency of the generated oscillations is meticulously recorded using a seven-digit frequency meter with a resolution of 1 Hz. The cell was filled with an array of pure liquids with known dielectric constants, and their frequencies were subsequently recorded at ambient temperatures. An equation was fitted to the frequency-dielectric constant curve, which was used as a calibration equation to determine the dielectric constant of subsequent liquids. In addition to pure liquids, dielectric constants for solvent mixtures of varying mole fractions were also calculated using the previously established calibration equation. Our results demonstrated excellent frequency stability of the instrument, and the obtained dielectric constant values displayed significant consistency with both the experimental data and predictions made by computational methodologies. This suggests that the constructed instrument exhibits a high level of accuracy in measuring the dielectric constant of both pure and mixed liquids, establishing its potential utility in relevant research and industrial applications.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223926\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223926","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids.
This research presents the development and construction of a cost-effective instrument, designed to measure the dielectric constant of liquids by employing a non-contact method that relies on determining the capacitance of a cell containing the liquid and its relaxation frequency. This instrument utilizes an astable multi-vibrator integrated with a resistance-capacitor network, in which the cell housing the liquid of interest functions as a capacitor element of the oscillator. The frequency of the generated oscillations is meticulously recorded using a seven-digit frequency meter with a resolution of 1 Hz. The cell was filled with an array of pure liquids with known dielectric constants, and their frequencies were subsequently recorded at ambient temperatures. An equation was fitted to the frequency-dielectric constant curve, which was used as a calibration equation to determine the dielectric constant of subsequent liquids. In addition to pure liquids, dielectric constants for solvent mixtures of varying mole fractions were also calculated using the previously established calibration equation. Our results demonstrated excellent frequency stability of the instrument, and the obtained dielectric constant values displayed significant consistency with both the experimental data and predictions made by computational methodologies. This suggests that the constructed instrument exhibits a high level of accuracy in measuring the dielectric constant of both pure and mixed liquids, establishing its potential utility in relevant research and industrial applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.