通过普鲁士蓝纳米药物产生碳自由基提高肿瘤光动力协同治疗疗效

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-08-24 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbae103
Jun Zhong, Mingzhi Zhu, Jiaqi Guo, Xinyu Chen, Ruimin Long, Fabian Körte, Shibin Wang, Hao Chen, Xin Xiong, Yuangang Liu
{"title":"通过普鲁士蓝纳米药物产生碳自由基提高肿瘤光动力协同治疗疗效","authors":"Jun Zhong, Mingzhi Zhu, Jiaqi Guo, Xinyu Chen, Ruimin Long, Fabian Körte, Shibin Wang, Hao Chen, Xin Xiong, Yuangang Liu","doi":"10.1093/rb/rbae103","DOIUrl":null,"url":null,"abstract":"<p><p>Significant progress has been achieved in tumor therapies utilizing nano-enzymes which could convert hydrogen peroxide into reactive oxygen species (ROS). However, the ROS generated by these enzymes possess a short half-life and exhibit limited diffusion within cells, making it challenging to inflict substantial damage on major organelles for effective tumor therapy. Therefore, it becomes crucial to develop a novel nanoplatform that could extend radicals half-life. Artesunate (ATS) is a Fe (II)-dependent drug, while the limited availability of iron (II), coupled with the poor aqueous solubility of ATS, limits its application. Here, Prussian blue (PB) was selected as a nano-carrier to release Fe (II), thus constructing a hollow Prussian blue/artesunate/methylene blue (HPB/ATS/MB) nanoplatform. HPB degraded and released iron(III), ATS and MB, under the combined effects of NIR irradiation and the unique tumor microenvironment. Moreover, Fe (III) exploited GSH to formation of Fe (II), disturbing the redox homeostasis of tumor cells and Fe (II) reacted with H<sub>2</sub>O<sub>2</sub> and ATS to generate carbon radicals with a long half-life <i>in situ</i>. Furthermore, MB generates <sup>1</sup>O<sub>2</sub> under laser irradiation conditions. <i>In vitro</i> and <i>in vivo</i> experiments have demonstrated that the HPB/ATS/MB NPs exhibit a synergistic therapeutic effect through photothermal therapy, photodynamic therapy and radical therapy.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae103"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434160/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing tumor photodynamic synergistic therapy efficacy through generation of carbon radicals by Prussian blue nanomedicine.\",\"authors\":\"Jun Zhong, Mingzhi Zhu, Jiaqi Guo, Xinyu Chen, Ruimin Long, Fabian Körte, Shibin Wang, Hao Chen, Xin Xiong, Yuangang Liu\",\"doi\":\"10.1093/rb/rbae103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Significant progress has been achieved in tumor therapies utilizing nano-enzymes which could convert hydrogen peroxide into reactive oxygen species (ROS). However, the ROS generated by these enzymes possess a short half-life and exhibit limited diffusion within cells, making it challenging to inflict substantial damage on major organelles for effective tumor therapy. Therefore, it becomes crucial to develop a novel nanoplatform that could extend radicals half-life. Artesunate (ATS) is a Fe (II)-dependent drug, while the limited availability of iron (II), coupled with the poor aqueous solubility of ATS, limits its application. Here, Prussian blue (PB) was selected as a nano-carrier to release Fe (II), thus constructing a hollow Prussian blue/artesunate/methylene blue (HPB/ATS/MB) nanoplatform. HPB degraded and released iron(III), ATS and MB, under the combined effects of NIR irradiation and the unique tumor microenvironment. Moreover, Fe (III) exploited GSH to formation of Fe (II), disturbing the redox homeostasis of tumor cells and Fe (II) reacted with H<sub>2</sub>O<sub>2</sub> and ATS to generate carbon radicals with a long half-life <i>in situ</i>. Furthermore, MB generates <sup>1</sup>O<sub>2</sub> under laser irradiation conditions. <i>In vitro</i> and <i>in vivo</i> experiments have demonstrated that the HPB/ATS/MB NPs exhibit a synergistic therapeutic effect through photothermal therapy, photodynamic therapy and radical therapy.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae103\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434160/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae103\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae103","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

利用可将过氧化氢转化为活性氧(ROS)的纳米酶治疗肿瘤已取得重大进展。然而,这些酶产生的 ROS 半衰期很短,在细胞内的扩散也很有限,因此很难对主要细胞器造成实质性损伤,从而有效治疗肿瘤。因此,开发一种可延长自由基半衰期的新型纳米平台变得至关重要。青蒿琥酯(ATS)是一种依赖铁(II)的药物,但由于铁(II)的供应有限,再加上青蒿琥酯的水溶性较差,限制了它的应用。在这里,普鲁士蓝(PB)被选为释放铁(II)的纳米载体,从而构建了中空的普鲁士蓝/青蒿琥酯/亚甲蓝(HPB/ATS/MB)纳米平台。在近红外照射和独特的肿瘤微环境的共同作用下,HPB 降解并释放铁(III)、ATS 和 MB。此外,铁(III)利用 GSH 形成铁(II),扰乱了肿瘤细胞的氧化还原平衡;铁(II)与 H2O2 和 ATS 反应,在原位生成半衰期较长的碳自由基。此外,甲基溴还会在激光照射条件下生成 1O2。体外和体内实验证明,HPB/ATS/MB NPs 可通过光热疗法、光动力疗法和自由基疗法发挥协同治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing tumor photodynamic synergistic therapy efficacy through generation of carbon radicals by Prussian blue nanomedicine.

Significant progress has been achieved in tumor therapies utilizing nano-enzymes which could convert hydrogen peroxide into reactive oxygen species (ROS). However, the ROS generated by these enzymes possess a short half-life and exhibit limited diffusion within cells, making it challenging to inflict substantial damage on major organelles for effective tumor therapy. Therefore, it becomes crucial to develop a novel nanoplatform that could extend radicals half-life. Artesunate (ATS) is a Fe (II)-dependent drug, while the limited availability of iron (II), coupled with the poor aqueous solubility of ATS, limits its application. Here, Prussian blue (PB) was selected as a nano-carrier to release Fe (II), thus constructing a hollow Prussian blue/artesunate/methylene blue (HPB/ATS/MB) nanoplatform. HPB degraded and released iron(III), ATS and MB, under the combined effects of NIR irradiation and the unique tumor microenvironment. Moreover, Fe (III) exploited GSH to formation of Fe (II), disturbing the redox homeostasis of tumor cells and Fe (II) reacted with H2O2 and ATS to generate carbon radicals with a long half-life in situ. Furthermore, MB generates 1O2 under laser irradiation conditions. In vitro and in vivo experiments have demonstrated that the HPB/ATS/MB NPs exhibit a synergistic therapeutic effect through photothermal therapy, photodynamic therapy and radical therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信