工作记忆负荷下的错误监测:皮层电学调查

IF 2.9 2区 心理学 Q2 NEUROSCIENCES
Brandon K Watanabe, Elizabeth A Bauer, Annmarie MacNamara
{"title":"工作记忆负荷下的错误监测:皮层电学调查","authors":"Brandon K Watanabe, Elizabeth A Bauer, Annmarie MacNamara","doi":"10.1111/psyp.14694","DOIUrl":null,"url":null,"abstract":"<p><p>Error monitoring is essential for detecting errors and may facilitate behavioral adjustments that can reduce or prevent future errors. At times, error monitoring must occur while individuals are engaged in other, cognitively demanding tasks that might consume processing resources necessary for error monitoring. Here, we set out to determine whether concurrent working memory (WM) load interferes with error monitoring, as measured using event-related potentials, the error-related negativity (Ne/ERN), and error positivity (Pe). Fifty-four participants (n = 33 female) completed an arrowhead flanker task, with trials presented under low (2 letter) or high (6 letter) WM load. Participants were required to hold letter strings in memory and to recall these letters at the end of a set of flanker trials. Results showed that WM load reduced the Pe but did not affect the Ne/ERN. Therefore, WM load appeared to attenuate later, more elaborated stages of error processing, though initial error detection was unaffected. Additionally, high WM load slowed reaction times overall, but did not lead to a significant increase in errors. As such, slower responses may have helped participants maintain comparable accuracy for low-load versus high-load trials. Overall, results indicate that WM load interferes with the evaluation of error significance, which could interfere with behavioral adaptations over time.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error monitoring under working memory load: An electrocortical investigation.\",\"authors\":\"Brandon K Watanabe, Elizabeth A Bauer, Annmarie MacNamara\",\"doi\":\"10.1111/psyp.14694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Error monitoring is essential for detecting errors and may facilitate behavioral adjustments that can reduce or prevent future errors. At times, error monitoring must occur while individuals are engaged in other, cognitively demanding tasks that might consume processing resources necessary for error monitoring. Here, we set out to determine whether concurrent working memory (WM) load interferes with error monitoring, as measured using event-related potentials, the error-related negativity (Ne/ERN), and error positivity (Pe). Fifty-four participants (n = 33 female) completed an arrowhead flanker task, with trials presented under low (2 letter) or high (6 letter) WM load. Participants were required to hold letter strings in memory and to recall these letters at the end of a set of flanker trials. Results showed that WM load reduced the Pe but did not affect the Ne/ERN. Therefore, WM load appeared to attenuate later, more elaborated stages of error processing, though initial error detection was unaffected. Additionally, high WM load slowed reaction times overall, but did not lead to a significant increase in errors. As such, slower responses may have helped participants maintain comparable accuracy for low-load versus high-load trials. Overall, results indicate that WM load interferes with the evaluation of error significance, which could interfere with behavioral adaptations over time.</p>\",\"PeriodicalId\":20913,\"journal\":{\"name\":\"Psychophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychophysiology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/psyp.14694\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14694","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

错误监测对于发现错误至关重要,它可以促进行为调整,从而减少或防止未来的错误。有时,错误监控必须在个人从事其他认知要求较高的任务时进行,而这些任务可能会消耗错误监控所需的处理资源。在此,我们通过事件相关电位、错误相关负性(Ne/ERN)和错误正性(Pe)来测定并发工作记忆(WM)负荷是否会干扰错误监控。54 名参与者(n = 33 名女性)完成了一项箭头侧向任务,试验在低 WM 负荷(2 个字母)或高 WM 负荷(6 个字母)的情况下进行。参与者需要在记忆中保持字母串,并在一组侧面试验结束时回忆这些字母。结果显示,WM 负荷降低了 Pe,但并不影响 Ne/ERN。因此,尽管最初的错误检测不受影响,但 WM 负荷似乎削弱了错误处理的后期、更复杂的阶段。此外,高 WM 负荷总体上减慢了反应时间,但并没有导致错误的显著增加。因此,较慢的反应速度可能有助于参与者在低负荷试验和高负荷试验中保持相当的准确性。总之,研究结果表明,WM 负荷会干扰对错误重要性的评估,这可能会随着时间的推移干扰行为适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error monitoring under working memory load: An electrocortical investigation.

Error monitoring is essential for detecting errors and may facilitate behavioral adjustments that can reduce or prevent future errors. At times, error monitoring must occur while individuals are engaged in other, cognitively demanding tasks that might consume processing resources necessary for error monitoring. Here, we set out to determine whether concurrent working memory (WM) load interferes with error monitoring, as measured using event-related potentials, the error-related negativity (Ne/ERN), and error positivity (Pe). Fifty-four participants (n = 33 female) completed an arrowhead flanker task, with trials presented under low (2 letter) or high (6 letter) WM load. Participants were required to hold letter strings in memory and to recall these letters at the end of a set of flanker trials. Results showed that WM load reduced the Pe but did not affect the Ne/ERN. Therefore, WM load appeared to attenuate later, more elaborated stages of error processing, though initial error detection was unaffected. Additionally, high WM load slowed reaction times overall, but did not lead to a significant increase in errors. As such, slower responses may have helped participants maintain comparable accuracy for low-load versus high-load trials. Overall, results indicate that WM load interferes with the evaluation of error significance, which could interfere with behavioral adaptations over time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychophysiology
Psychophysiology 医学-神经科学
CiteScore
6.80
自引率
8.10%
发文量
225
审稿时长
2 months
期刊介绍: Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信