在阅读认知模型中,语言模型优于掐词预测。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2024-09-25 eCollection Date: 2024-09-01 DOI:10.1371/journal.pcbi.1012117
Adrielli Tina Lopes Rego, Joshua Snell, Martijn Meeter
{"title":"在阅读认知模型中,语言模型优于掐词预测。","authors":"Adrielli Tina Lopes Rego, Joshua Snell, Martijn Meeter","doi":"10.1371/journal.pcbi.1012117","DOIUrl":null,"url":null,"abstract":"<p><p>Although word predictability is commonly considered an important factor in reading, sophisticated accounts of predictability in theories of reading are lacking. Computational models of reading traditionally use cloze norming as a proxy of word predictability, but what cloze norms precisely capture remains unclear. This study investigates whether large language models (LLMs) can fill this gap. Contextual predictions are implemented via a novel parallel-graded mechanism, where all predicted words at a given position are pre-activated as a function of contextual certainty, which varies dynamically as text processing unfolds. Through reading simulations with OB1-reader, a cognitive model of word recognition and eye-movement control in reading, we compare the model's fit to eye-movement data when using predictability values derived from a cloze task against those derived from LLMs (GPT-2 and LLaMA). Root Mean Square Error between simulated and human eye movements indicates that LLM predictability provides a better fit than cloze. This is the first study to use LLMs to augment a cognitive model of reading with higher-order language processing while proposing a mechanism on the interplay between word predictability and eye movements.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458034/pdf/","citationCount":"0","resultStr":"{\"title\":\"Language models outperform cloze predictability in a cognitive model of reading.\",\"authors\":\"Adrielli Tina Lopes Rego, Joshua Snell, Martijn Meeter\",\"doi\":\"10.1371/journal.pcbi.1012117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although word predictability is commonly considered an important factor in reading, sophisticated accounts of predictability in theories of reading are lacking. Computational models of reading traditionally use cloze norming as a proxy of word predictability, but what cloze norms precisely capture remains unclear. This study investigates whether large language models (LLMs) can fill this gap. Contextual predictions are implemented via a novel parallel-graded mechanism, where all predicted words at a given position are pre-activated as a function of contextual certainty, which varies dynamically as text processing unfolds. Through reading simulations with OB1-reader, a cognitive model of word recognition and eye-movement control in reading, we compare the model's fit to eye-movement data when using predictability values derived from a cloze task against those derived from LLMs (GPT-2 and LLaMA). Root Mean Square Error between simulated and human eye movements indicates that LLM predictability provides a better fit than cloze. This is the first study to use LLMs to augment a cognitive model of reading with higher-order language processing while proposing a mechanism on the interplay between word predictability and eye movements.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012117\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012117","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

虽然单词的可预测性通常被认为是阅读中的一个重要因素,但在阅读理论中却缺乏对可预测性的复杂描述。阅读的计算模型传统上使用 "掐词法"(cloze norming)作为单词可预测性的代表,但 "掐词法 "能准确捕捉到什么仍然不清楚。本研究探讨了大语言模型(LLM)能否填补这一空白。语境预测是通过一种新颖的平行分级机制实现的,在这种机制下,特定位置的所有预测词都会作为语境确定性的函数被预先激活,而语境确定性会随着文本处理的展开而动态变化。通过使用 OB1-reader 进行阅读模拟(OB1-reader 是阅读中单词识别和眼动控制的认知模型),我们比较了该模型与眼动数据的拟合情况,即使用从掐词任务中得出的预测值与从 LLM(GPT-2 和 LLaMA)中得出的预测值。模拟眼球运动与人类眼球运动之间的均方根误差表明,LLM 预测性比掐词法的拟合效果更好。这是第一项利用 LLMs 增强高阶语言处理阅读认知模型的研究,同时提出了单词可预测性与眼球运动之间的相互作用机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Language models outperform cloze predictability in a cognitive model of reading.

Although word predictability is commonly considered an important factor in reading, sophisticated accounts of predictability in theories of reading are lacking. Computational models of reading traditionally use cloze norming as a proxy of word predictability, but what cloze norms precisely capture remains unclear. This study investigates whether large language models (LLMs) can fill this gap. Contextual predictions are implemented via a novel parallel-graded mechanism, where all predicted words at a given position are pre-activated as a function of contextual certainty, which varies dynamically as text processing unfolds. Through reading simulations with OB1-reader, a cognitive model of word recognition and eye-movement control in reading, we compare the model's fit to eye-movement data when using predictability values derived from a cloze task against those derived from LLMs (GPT-2 and LLaMA). Root Mean Square Error between simulated and human eye movements indicates that LLM predictability provides a better fit than cloze. This is the first study to use LLMs to augment a cognitive model of reading with higher-order language processing while proposing a mechanism on the interplay between word predictability and eye movements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信