Serdar Tort, Ziya Canberk Öztürk, Fatma Kaynak-Onurdağ, N Başaran Mutlu-Ağardan
{"title":"制备并评估维甲酸负载的脂质体纳米纤维对微生物生物膜的抑制作用。","authors":"Serdar Tort, Ziya Canberk Öztürk, Fatma Kaynak-Onurdağ, N Başaran Mutlu-Ağardan","doi":"10.1080/10837450.2024.2411034","DOIUrl":null,"url":null,"abstract":"<p><p>The electrospinning method involves the production of different drug delivery systems using various polymers. The production of proliposomes with electrospinning provides the hybridization of two novel drug delivery systems. Retinoic acid, also known as all-trans retinoic acid (ATRA), is a common and effective drug for acne therapy. This study aimed to prepare ATRA-loaded proliposomal nanofibers and evaluate their effectiveness on microbial biofilm inhibition. Blank and ATRA-loaded proliposomal nanofiber formulations were fabricated in various polyvinylpyrrolidone, phosphatidylcholine and cholesterol ratios. TEM images verified the rapid formation of the liposomes after the hydration of nanofibers. The vesicle size, polydispersity index and zeta potential values of self-assembled liposomes were measured. The vesicle size values were found to be 321.9-363.8 nm with PDI values varying between 0.332 and 0.511 and zeta potential values of (-16.8) to (-20.5)mV. ATRA-loaded proliposomal nanofibers provided higher bioadhesion (0.25 mJ/cm<sup>2</sup>) than the commercial cream (0.07 mJ/cm<sup>2</sup>). The short-term stability results showed that the initial characteristics remained for three months at 4 °C. The proposed ATRA-loaded self-assembled proliposomal system provided antibacterial, fungistatic or fungicidal effects superior to retinoic acid itself and inhibited biofilm formation in lower concentrations. This approach can combine the stability advantage of nanofibers in the dry state with the high effectiveness of liposomes in acne treatment presenting antibacterial and anti-biofilm-forming activity against <i>Candida albicans</i> and <i>Cutibacterium acnes</i>.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"955-965"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and evaluation the effects of retinoic acid loaded proliposomal nanofibers on microbial biofilm inhibition.\",\"authors\":\"Serdar Tort, Ziya Canberk Öztürk, Fatma Kaynak-Onurdağ, N Başaran Mutlu-Ağardan\",\"doi\":\"10.1080/10837450.2024.2411034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrospinning method involves the production of different drug delivery systems using various polymers. The production of proliposomes with electrospinning provides the hybridization of two novel drug delivery systems. Retinoic acid, also known as all-trans retinoic acid (ATRA), is a common and effective drug for acne therapy. This study aimed to prepare ATRA-loaded proliposomal nanofibers and evaluate their effectiveness on microbial biofilm inhibition. Blank and ATRA-loaded proliposomal nanofiber formulations were fabricated in various polyvinylpyrrolidone, phosphatidylcholine and cholesterol ratios. TEM images verified the rapid formation of the liposomes after the hydration of nanofibers. The vesicle size, polydispersity index and zeta potential values of self-assembled liposomes were measured. The vesicle size values were found to be 321.9-363.8 nm with PDI values varying between 0.332 and 0.511 and zeta potential values of (-16.8) to (-20.5)mV. ATRA-loaded proliposomal nanofibers provided higher bioadhesion (0.25 mJ/cm<sup>2</sup>) than the commercial cream (0.07 mJ/cm<sup>2</sup>). The short-term stability results showed that the initial characteristics remained for three months at 4 °C. The proposed ATRA-loaded self-assembled proliposomal system provided antibacterial, fungistatic or fungicidal effects superior to retinoic acid itself and inhibited biofilm formation in lower concentrations. This approach can combine the stability advantage of nanofibers in the dry state with the high effectiveness of liposomes in acne treatment presenting antibacterial and anti-biofilm-forming activity against <i>Candida albicans</i> and <i>Cutibacterium acnes</i>.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"955-965\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2411034\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2411034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Preparation and evaluation the effects of retinoic acid loaded proliposomal nanofibers on microbial biofilm inhibition.
The electrospinning method involves the production of different drug delivery systems using various polymers. The production of proliposomes with electrospinning provides the hybridization of two novel drug delivery systems. Retinoic acid, also known as all-trans retinoic acid (ATRA), is a common and effective drug for acne therapy. This study aimed to prepare ATRA-loaded proliposomal nanofibers and evaluate their effectiveness on microbial biofilm inhibition. Blank and ATRA-loaded proliposomal nanofiber formulations were fabricated in various polyvinylpyrrolidone, phosphatidylcholine and cholesterol ratios. TEM images verified the rapid formation of the liposomes after the hydration of nanofibers. The vesicle size, polydispersity index and zeta potential values of self-assembled liposomes were measured. The vesicle size values were found to be 321.9-363.8 nm with PDI values varying between 0.332 and 0.511 and zeta potential values of (-16.8) to (-20.5)mV. ATRA-loaded proliposomal nanofibers provided higher bioadhesion (0.25 mJ/cm2) than the commercial cream (0.07 mJ/cm2). The short-term stability results showed that the initial characteristics remained for three months at 4 °C. The proposed ATRA-loaded self-assembled proliposomal system provided antibacterial, fungistatic or fungicidal effects superior to retinoic acid itself and inhibited biofilm formation in lower concentrations. This approach can combine the stability advantage of nanofibers in the dry state with the high effectiveness of liposomes in acne treatment presenting antibacterial and anti-biofilm-forming activity against Candida albicans and Cutibacterium acnes.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.