Xiao Ran , Tingting Xu , Hang Ruan , Xiaochuan Wang , Qin Zhang
{"title":"缺血期补充组织 Kallikrein 可保护缺血性脑卒中的神经血管单元并减轻再灌注引起的损伤","authors":"Xiao Ran , Tingting Xu , Hang Ruan , Xiaochuan Wang , Qin Zhang","doi":"10.1016/j.phrs.2024.107435","DOIUrl":null,"url":null,"abstract":"<div><div>Tissue kallikrein (TK) has emerged as a potential neuroprotective agent in ischemic stroke (IS), yet the optimal timing and mechanisms of TK therapy remain unclear. Here, we established a causal link between lower baseline TK levels and an increased risk of stroke through a retrospective, multicenter cohort study involving 2115 initially non-stroke subjects monitored for 5 years. Sequentially, we observed a notable increase in bradykinin receptor 2 (B2R) levels during the ischemic phase of the IS model, while levels of TK and bradykinin receptor 1 (B1R) remained stable. Intriguingly, both B1R and B2R exhibited a significant elevation 24 h after reperfusion. Further investigations in preclinical models demonstrated that TK supplementation activates the PI3K/AKT signaling pathway via enhanced B2R expression during the ischemic phase, leading to nuclear translocation of Hif-1α. This activation enhances the expression of VEGF and eNOS, thereby fortifying the neurovascular unit. Moreover, it suppresses the activation of the kallikrein-kinin system induced by reperfusion injury, effectively reducing inflammation, ROS production, apoptosis, and endothelial barrier dysfunction. Thus, our findings highlight the significance of TK supplementation during the ischemic phase in attenuating reperfusion-induced injury in IS, providing a mechanistic rationale for determining the optimal timing for TK supplementation therapy.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"209 ","pages":"Article 107435"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue Kallikrein supplementation in ischemic phase protects the neurovascular unit and attenuates reperfusion-induced injury in ischemic stroke\",\"authors\":\"Xiao Ran , Tingting Xu , Hang Ruan , Xiaochuan Wang , Qin Zhang\",\"doi\":\"10.1016/j.phrs.2024.107435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tissue kallikrein (TK) has emerged as a potential neuroprotective agent in ischemic stroke (IS), yet the optimal timing and mechanisms of TK therapy remain unclear. Here, we established a causal link between lower baseline TK levels and an increased risk of stroke through a retrospective, multicenter cohort study involving 2115 initially non-stroke subjects monitored for 5 years. Sequentially, we observed a notable increase in bradykinin receptor 2 (B2R) levels during the ischemic phase of the IS model, while levels of TK and bradykinin receptor 1 (B1R) remained stable. Intriguingly, both B1R and B2R exhibited a significant elevation 24 h after reperfusion. Further investigations in preclinical models demonstrated that TK supplementation activates the PI3K/AKT signaling pathway via enhanced B2R expression during the ischemic phase, leading to nuclear translocation of Hif-1α. This activation enhances the expression of VEGF and eNOS, thereby fortifying the neurovascular unit. Moreover, it suppresses the activation of the kallikrein-kinin system induced by reperfusion injury, effectively reducing inflammation, ROS production, apoptosis, and endothelial barrier dysfunction. Thus, our findings highlight the significance of TK supplementation during the ischemic phase in attenuating reperfusion-induced injury in IS, providing a mechanistic rationale for determining the optimal timing for TK supplementation therapy.</div></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":\"209 \",\"pages\":\"Article 107435\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003803\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003803","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Tissue Kallikrein supplementation in ischemic phase protects the neurovascular unit and attenuates reperfusion-induced injury in ischemic stroke
Tissue kallikrein (TK) has emerged as a potential neuroprotective agent in ischemic stroke (IS), yet the optimal timing and mechanisms of TK therapy remain unclear. Here, we established a causal link between lower baseline TK levels and an increased risk of stroke through a retrospective, multicenter cohort study involving 2115 initially non-stroke subjects monitored for 5 years. Sequentially, we observed a notable increase in bradykinin receptor 2 (B2R) levels during the ischemic phase of the IS model, while levels of TK and bradykinin receptor 1 (B1R) remained stable. Intriguingly, both B1R and B2R exhibited a significant elevation 24 h after reperfusion. Further investigations in preclinical models demonstrated that TK supplementation activates the PI3K/AKT signaling pathway via enhanced B2R expression during the ischemic phase, leading to nuclear translocation of Hif-1α. This activation enhances the expression of VEGF and eNOS, thereby fortifying the neurovascular unit. Moreover, it suppresses the activation of the kallikrein-kinin system induced by reperfusion injury, effectively reducing inflammation, ROS production, apoptosis, and endothelial barrier dysfunction. Thus, our findings highlight the significance of TK supplementation during the ischemic phase in attenuating reperfusion-induced injury in IS, providing a mechanistic rationale for determining the optimal timing for TK supplementation therapy.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.