最佳蛋白质分配控制着淋病奈瑟菌中 GltA 和 AcnB 的抑制作用。

IF 2.7 4区 医学 Q3 IMMUNOLOGY
Nabia Shahreen, Niaz Bahar Chowdhury, Rajib Saha
{"title":"最佳蛋白质分配控制着淋病奈瑟菌中 GltA 和 AcnB 的抑制作用。","authors":"Nabia Shahreen, Niaz Bahar Chowdhury, Rajib Saha","doi":"10.1093/femspd/ftae023","DOIUrl":null,"url":null,"abstract":"<p><p>Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal protein allocation controls the inhibition of GltA and AcnB in Neisseria gonorrhoeae.\",\"authors\":\"Nabia Shahreen, Niaz Bahar Chowdhury, Rajib Saha\",\"doi\":\"10.1093/femspd/ftae023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.</p>\",\"PeriodicalId\":19795,\"journal\":{\"name\":\"Pathogens and disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens and disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/femspd/ftae023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftae023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淋病奈瑟菌(Ngo)对生殖健康有严重影响,是全球公共卫生关注的一个主要问题。了解其代谢表型对于理解其致病性至关重要。尽管 Ngo 能够编码 TCA 循环蛋白 GltA 和 AcnB,但它们的活性明显受到限制。为了研究这一现象,我们使用了 iNgoo_557 代谢模型,并加入了对细胞蛋白质总含量的限制。我们的研究结果表明,细胞蛋白质含量低会严重限制 GltA 和 AcnB 的活性,导致它们转向生产 ATP 的醋酸盐溢出,而醋酸盐溢出对蛋白质的利用率更高。令人惊讶的是,增加细胞蛋白质含量会减轻对 GltA 和 AcnB 的限制,并推迟乙酸溢出的发生,这突出表明蛋白质分配是了解 Ngo 代谢表型的关键决定因素。这些发现强调了 Ngo 在最佳蛋白质分配方面的代谢适应性,为了解 Ngo 的代谢状况提供了一个蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal protein allocation controls the inhibition of GltA and AcnB in Neisseria gonorrhoeae.

Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo's ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo's metabolic phenotype. These findings underscore the significance of Ngo's metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo's metabolic landscape.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信