Pei-Yun Li , Man-Yi Jing , Xing-Fang Cun , Ning Wu , Jin Li , Rui Song
{"title":"上丘到腹侧被盖区的神经回路调节与小鼠光学颅内自我刺激奖赏行为相关的视觉线索","authors":"Pei-Yun Li , Man-Yi Jing , Xing-Fang Cun , Ning Wu , Jin Li , Rui Song","doi":"10.1016/j.neulet.2024.137997","DOIUrl":null,"url":null,"abstract":"<div><div>Visual system is the most important system of animal to cognize the information in outside world, and reward-related visual cues are the key factors in the consolidation and retrieval of reward memory. However, the neural circuit mechanism is still unclear. Superior Colliculus (SC) receive direct input from the retina and belong to the earliest stages of visual processing. Recent studies identified a specific pathway from SC to ventral tegmental area (VTA) that underlie specific innate behaviors, eg. flight or freezing, approach behaviors and so on. In present research, we investigated that inhibition of SC to VTA circuit with chemogenetics suppressed light cue-associated reward-seeking behaviors, while activation of the SC-VTA circuit with chemogenetic technology triggered the reward-seeking behaviors in optical intracranial self-stimulation for VTA DA neurons (oICSS) in mice. These findings suggest that neural circuit of SC-VTA mediates the retrieval of reward memory associated with visual cues, which will provide a new field for revealing the neural mechanism of pathological memory such as addiction.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"842 ","pages":"Article 137997"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neural circuit of Superior colliculus to ventral tegmental area modulates visual cue associated with rewarding behavior in optical intracranial Self-Stimulation in mice\",\"authors\":\"Pei-Yun Li , Man-Yi Jing , Xing-Fang Cun , Ning Wu , Jin Li , Rui Song\",\"doi\":\"10.1016/j.neulet.2024.137997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual system is the most important system of animal to cognize the information in outside world, and reward-related visual cues are the key factors in the consolidation and retrieval of reward memory. However, the neural circuit mechanism is still unclear. Superior Colliculus (SC) receive direct input from the retina and belong to the earliest stages of visual processing. Recent studies identified a specific pathway from SC to ventral tegmental area (VTA) that underlie specific innate behaviors, eg. flight or freezing, approach behaviors and so on. In present research, we investigated that inhibition of SC to VTA circuit with chemogenetics suppressed light cue-associated reward-seeking behaviors, while activation of the SC-VTA circuit with chemogenetic technology triggered the reward-seeking behaviors in optical intracranial self-stimulation for VTA DA neurons (oICSS) in mice. These findings suggest that neural circuit of SC-VTA mediates the retrieval of reward memory associated with visual cues, which will provide a new field for revealing the neural mechanism of pathological memory such as addiction.</div></div>\",\"PeriodicalId\":19290,\"journal\":{\"name\":\"Neuroscience Letters\",\"volume\":\"842 \",\"pages\":\"Article 137997\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304394024003756\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024003756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The neural circuit of Superior colliculus to ventral tegmental area modulates visual cue associated with rewarding behavior in optical intracranial Self-Stimulation in mice
Visual system is the most important system of animal to cognize the information in outside world, and reward-related visual cues are the key factors in the consolidation and retrieval of reward memory. However, the neural circuit mechanism is still unclear. Superior Colliculus (SC) receive direct input from the retina and belong to the earliest stages of visual processing. Recent studies identified a specific pathway from SC to ventral tegmental area (VTA) that underlie specific innate behaviors, eg. flight or freezing, approach behaviors and so on. In present research, we investigated that inhibition of SC to VTA circuit with chemogenetics suppressed light cue-associated reward-seeking behaviors, while activation of the SC-VTA circuit with chemogenetic technology triggered the reward-seeking behaviors in optical intracranial self-stimulation for VTA DA neurons (oICSS) in mice. These findings suggest that neural circuit of SC-VTA mediates the retrieval of reward memory associated with visual cues, which will provide a new field for revealing the neural mechanism of pathological memory such as addiction.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.