用于动态多镜头成像的神经时空模型

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ruiming Cao, Nikita S Divekar, James K Nuñez, Srigokul Upadhyayula, Laura Waller
{"title":"用于动态多镜头成像的神经时空模型","authors":"Ruiming Cao, Nikita S Divekar, James K Nuñez, Srigokul Upadhyayula, Laura Waller","doi":"10.1038/s41592-024-02417-0","DOIUrl":null,"url":null,"abstract":"<p><p>Computational imaging reconstructions from multiple measurements that are captured sequentially often suffer from motion artifacts if the scene is dynamic. We propose a neural space-time model (NSTM) that jointly estimates the scene and its motion dynamics, without data priors or pre-training. Hence, we can both remove motion artifacts and resolve sample dynamics from the same set of raw measurements used for the conventional reconstruction. We demonstrate NSTM in three computational imaging systems: differential phase-contrast microscopy, three-dimensional structured illumination microscopy and rolling-shutter DiffuserCam. We show that NSTM can recover subcellular motion dynamics and thus reduce the misinterpretation of living systems caused by motion artifacts.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural space-time model for dynamic multi-shot imaging.\",\"authors\":\"Ruiming Cao, Nikita S Divekar, James K Nuñez, Srigokul Upadhyayula, Laura Waller\",\"doi\":\"10.1038/s41592-024-02417-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational imaging reconstructions from multiple measurements that are captured sequentially often suffer from motion artifacts if the scene is dynamic. We propose a neural space-time model (NSTM) that jointly estimates the scene and its motion dynamics, without data priors or pre-training. Hence, we can both remove motion artifacts and resolve sample dynamics from the same set of raw measurements used for the conventional reconstruction. We demonstrate NSTM in three computational imaging systems: differential phase-contrast microscopy, three-dimensional structured illumination microscopy and rolling-shutter DiffuserCam. We show that NSTM can recover subcellular motion dynamics and thus reduce the misinterpretation of living systems caused by motion artifacts.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-024-02417-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02417-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

如果场景是动态的,那么根据连续捕获的多个测量值进行的计算成像重建往往会出现运动伪影。我们提出了一种神经时空模型 (NSTM),它可以联合估计场景及其运动动态,而无需数据先验或预训练。因此,我们既能消除运动伪影,又能从用于传统重建的同一组原始测量数据中解析样本动态。我们在三个计算成像系统中演示了 NSTM:差分相位对比显微镜、三维结构照明显微镜和滚动快门 DiffuserCam。我们表明,NSTM 可以恢复亚细胞运动动态,从而减少运动伪影对生命系统的误读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural space-time model for dynamic multi-shot imaging.

Computational imaging reconstructions from multiple measurements that are captured sequentially often suffer from motion artifacts if the scene is dynamic. We propose a neural space-time model (NSTM) that jointly estimates the scene and its motion dynamics, without data priors or pre-training. Hence, we can both remove motion artifacts and resolve sample dynamics from the same set of raw measurements used for the conventional reconstruction. We demonstrate NSTM in three computational imaging systems: differential phase-contrast microscopy, three-dimensional structured illumination microscopy and rolling-shutter DiffuserCam. We show that NSTM can recover subcellular motion dynamics and thus reduce the misinterpretation of living systems caused by motion artifacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信